
I) Do bottom-up register allocation with 3 registers. When choosing a register to allocate always

choose the lowest numbered one available. When choosing register to spill, choose the non-dirty

register that will be used farthest in future. If all registers are dirty, choose the one that is used

farthest in future. In case of a tie, choose the lowest numbered register.

1. A = B + C

2. C = A + B
3. T1 = B + C

4. T2 = T1 + C

5. D = T2

6. E = A + B

7. B = E + D

8. A = C + D

9. T3 = A + B

10. WRITE(T3)

 Ans:

 Instruction Live
1 A = B + C { A, B }

2 C = A + B { A, B, C }
3 T1 = B + C { A, B, C, T1 }
4 T2 = T1 + C { A, B, C, T2 }
5 D = T2 { A, B, C, D }
6 E = A + B { C, D, E }
7 B = E + D { B, C, D }
8 A = C + D { A, B }
9 T3 = A + B { T3 }
10 WRITE(T3) { }

1. A = B + C

Code generated Register Map
(* indicates dirty register)

Comments

LD B R1
LD C R2
ADD R1 R2 R2

R1: B R2: A* • ensure(B) returns R1, associates B with R1
and generates LD B R1,

• ensure(C) returns R2, associates C with R2
and generates LD C R2

• free(R2) marks R2 as free
(because C is dead)

• allocate(A) returns R2, associates R2 with A

• generate code for ADD

• mark R2 as dirty

2. C = A + B

Code generated Register Map
(* indicates dirty register)

Comments

ADD R2 R1 R3 R1: B R2: A* R3: C* • ensure(A) returns R2

• ensure(B) returns R1

• allocate(C) returns R3, associates R3 with C

• generate code for ADD

• mark R3 as dirty

3. T1 = B + C

Code generated Register Map
(* indicates dirty register)

Comments

ADD R1 R3 R1 R1: T1* R2: A* R3: C* • ensure(B) returns R1

• ensure(C) returns R3

• allocate(T1) returns R1, associates R1 with
T1 (No register is free. Chooses R1 to free
since R1 is non-dirty and is used farthest in
future (in instruction 6))

• generate code for ADD

• mark R1 as dirty

4. T2 = T1 + C

Code generated Register Map
(* indicates dirty register)

Comments

ADD R1 R3 R1 R1: T2* R2: A* R3: C* • ensure(T1) returns R1

• ensure(C) returns R3

• free(T1) marks R1 as free
(No Store despite R1 is dirty because T1 is dead)

• allocate(T2) returns R1, associates R1 with C

• generate code for ADD

• mark R1 as dirty

5. D = T2

Code generated Register Map
(* indicates dirty register)

Comments

 R1: D* R2: A* R3: C* • ensure(T2) returns R1

• free(T2) marks R1 as free
(No Store despite R1 is dirty because T2 is dead)

• allocate(D) returns R1, associates R1 with D

• No code generated

• mark R1 as dirty

6. E = A + B

Code generated Register Map
(* indicates dirty register)

Comments

ST R3 C
LD B R3
ADD R2 R3 R2

R1: D* R2: E* R3: • ensure(A) returns R2

• ensure(B) returns R3
(No register is free. All registers dirty. So, a
call to allocate(B) chooses R3 among R1 and
R3 to free. R3 is chosen because C is used
farthest in future. free(R3) generates store
because C is live. Associates R3 with B.
Generates Load from B into R3)

• free(A) marks R2 as free
(No Store despite R2 is dirty because A is dead)

• free(B) marks R3 as free
(because B is dead)

• allocate(E) returns R2, associates R2 with E

• Generate code for ADD

• mark R2 as dirty

7. B = E + D

Code generated Register Map
(* indicates dirty register)

Comments

ADD R2 R1 R2 R1: D* R2: B* R3: • ensure(E) returns R2

• ensure(D) returns R1

• free(E) marks R2 as free
(No Store despite R2 is dirty because E is dead)

• allocate(B) returns R2, associates R2 with B

• Generate code for ADD

• mark R2 as dirty

8. A = C + D

Code generated Register Map
(* indicates dirty
register)

Comments

LD C R3
ADD R3 R1 R1

R1: A* R2: B* R3: • ensure(C) returns R3, associates R3 with C,
generates load from C into R3

• ensure(D) returns R1

• free(C) marks R3 as free (C is dead)

• free(D) marks R1 as free
(no store despite R1 being dirty because D is dead)

• allocate(A) returns R1, associates R1 with A

• Generate code for ADD

• mark R1 as dirty

9. T3 = A + B

Code generated Register Map
(* indicates dirty register)

Comments

ADD R1 R2 R1 R1: T3* R2: R3: • ensure(A) returns R1

• ensure(B) returns R2

• free(A) marks R1 as free
(A is dead, No store.)

• free(B) marks R2 as free
(B is dead. No store)

• allocate(T3) returns R1, associates R1 with T3

• Generate code for ADD

• mark R1 as dirty

10. WRITE(T3)

Code generated Register Map
(* indicates dirty register)

Comments

WRITE(R1) R1: R2: R3: • ensure(T3) returns R1

• free(T3) marks R1 as free

• Generate code for WRITE

Summarizing:

 Instruction Live Registers Code
 R1 R2 R3
1 A = B + C { A, B } B A* LD B R1

LD C R2
ADD R1 R2 R2

2 C = A + B { A, B, C } B A* C* ADD R2 R1 R3
3 T1 = B +

C
{ A, B, C, T1
}

T1* A* C* ADD R1 R3 R1

4 T2 = T1 +
C

{ A, B, C, T2
}

T2* A* C* ADD R1 R3 R1

5 D = T2 { A, B, C, D } D* A* C*
6 E = A + B { C, D, E } D* E* ST R3 C

LD B R3
ADD R2 R3 R2

7 B = E + D { B, C, D } D* B* ADD R2 R1 R2
8 A = C + D { A, B } A* B* LD C R3

ADD R3 R1 R1
9 T3 = A +

B
{ T3 } T3* ADD R1 R2 R1

10 WRITE(T3) { } WRITE R1

II. Two ALUs (fully pipelined) and one LD/ST unit (not pipelined) are available. Either of the ALUs can

execute ADD (1 cycle). Only one of the ALUs can execute MUL (2 cycles). LDs take up an ALU for 1 cycle

and LD/ST unit for two cycles. STs take up an ALU for 1 cycle and LD/ST unit for one cycle. i) Draw

reservation tables, ii) DAG for the code shown iii) schedule using height based list scheduling.

1. LD A R1

2. LD B R2

3. LD C R3
4. LD D R4

5. R5 = R1 + R2

6. R6 = R5 * R3

7. R7 = R1 + R6

8. R8 = R6 + R5

9. R9 = R4 + R7
10. R10 = R9 + R8

11. ST R10 E

12. ST R7 F

Ans:

(i)

(ii) DAG

(iii) DAG with heights assigned to nodes (height of a leaf node = latency of that instruction. Height of

an interior node = maximum of heights of all children + latency of that instruction)

III.

Answer (part 1): leaders: {1, 2/3, 5, 10, 11/12, 15, 17/18} acceptable if you write 2 or 3 as part of the

leader set but not both. Similarly, 11/12 and 17/18. Basic Blocks: there are seven basic blocks each

having instructions with numbers starting from the leader and up to but not including the next leader.

Answer (part 2): After applying dead-code elimination, the CFG will not contain the basic block having

instructions 15, 16

IV.

 Answer:

Order of computation used in computing the table:

IN_b4, OUT_b3, IN_b3, OUT_b2, IN_b2, OUT_b1, IN_b1, OUT_b5, IN_b5

Change in IN_b5 requires the edge b2-b5 to be revisited. Hence compute: OUT_b2, IN_b2.

Change in IN_b2 requires OUT_b1 to be revisited. Hence compute: OUT_b1, IN_b1.

IN and OUT sets for other blocks remain the same as earlier.

IN_b1 and OUT_b1 don’t change. Hence, there are no more edges to be processed and

The worklist algorithm halts.

V.

Answer: Loop j can be executed in parallel. The dependencies are on previous iteration values.

