
CS323: Compilers
Spring 2023

Assignment 1

CS323, IIT Dharwad 1

Assignment 1 – Q1 (6 mins)

Write a regular expression that matches different names of a
harvest festival celebrated across India.

• Your expression must match at least one name
attributed to the festival from the states of North, South,
East, and West India

• Try to maximize the number of strings that your regular
language/set contains.

(assume that the regular language is over English alphabets.
and use the notations that we discussed in class).

CS323, IIT Dharwad 2

Assignment 1 – Q1 (common mistakes)
1. (s|p|m)(a|o)(n|g)(k|g|b|h)(r|a|i)(a|l|h)(n|u)*(ti)*

matches “sankran”, “mankran” etc.

2. b?ho(g|l)i

matches `hogi` etc.

3. Sankranti | Christmas | Rath Yatra | Bhai Duj | Shivaji Jayanthi

incorrect: (Christmas / Shivaji Jayanthi / Bhai Duj / Rath Yatra)

4. lohri|pongal|Sankranti

(only 3 correct answers)

5. Pongal, sankranti,magha, bihu

(Incorrect regular expression. Matches “Pongal,Sankranti,magha,bihu”)

3CS406, IIT Dharwad

One possible correct answer: pongal|sankranti|lohri|onam

Marking criteria: -0.25 for less than 4 correct strings
-0.25 for incorrect string accepted
-0.25 for answers that include independence day, Christmas, Eid, Shivaratri etc.

Assignment 1 – Q2 (12 mins)

For the string –(id+id)+id show the sequence of derivations in:

a) Bottom-up parsing,

b) Recursive-descent parsing

4

The Grammar:

A -> B

A -> B+A

B -> -B

B -> id

B -> (A)

Hint: right-most derivation in reverse for bottom-up parsing.
Try all productions in that order for recursive descent parsing

Assignment 1 – Q2 (answer)

For the string –(id+id)+id show the sequence of derivations in:

a) Bottom-up parsing,

b) Recursive-descent parsing

5

The Grammar:

A -> B

A -> B+A

B -> -B

B -> id

B -> (A)

right-most derivation in
reverse for bottom-up parsing.

• -(id+id)+id
• -(B+id)+id

• -(B+B)+id

• -(B+A)+id

• -(A)+id

• -B+id

• B+id

• B+B

• B+A

• A

• A->B

• ->B+A

• ->-B+A

• ->-(A)+A

• ->-(B+A)+A

• ->-(id+A)+A

• ->-(id+B)+A

• ->-(id+id)+A

• ->-(id+id)+B

• ->-(id+id)+id

left-most derivation in top-
down parsing

Acceptable if you show the parse
tree.

Assignment 1 – Q3 (8 mins)

1. Complete the CFSM (fill state 5)

2. Fill the table and and add new entries if needed

6

Parse Stack Prefix
matched

Parser Action

((x

The Grammar:

S -> Ab$

A -> (bA)

A -> (A)

A -> x

Hint: add items to form a closure if .
precedes a non-terminal.

Assignment 1 – Q3 (answer)

1. Complete the CFSM (fill state 5)

2. Fill the table and and add new entries if needed

7

Parse Stack Prefix matched Parser Action

0554 ((x Reduce using rule A->x

0556 ((A Goto 6

The Grammar:

S -> Ab$

A -> (bA)

A -> (A)

A -> x

Hint: add items to form a closure if .
precedes a non-terminal.

A->(.bA)
A->(.A)
A->.(bA)
A->.(A)
A->.x

Assignment 1 – Q4 (12 mins)

• Draw the AST for the expression and generate 3-address
code a := b + c * d + 1 ;
• assume bison declarations:

%left *

%left +

8

Hint: + has higher priority than * and both operators are left associative. So,
the resulting expression is treated as: a := ((b + c) * (d + 1)) ;

Assignment 1 – Q4 (answer)

• Draw the AST for the expression
and generate 3-address code a
:= b + c * d + 1 ;

• assume bison declarations:

%left *

%left +

9

Hint: + has higher priority than
* and both operators are left
associative. So, the resulting
expression is treated as: a :=
((b + c) * (d + 1)) ;

:=

a *

+

b c

+

d 1

Node a:

Temp: a

Type: l-value

Code: --

Node b:

Temp: b

Type: l-value

Code: --

Node c:

Temp: c

Type: l-value

Code: --

Node + (parent of b,c):

Temp: t1

Type: r-value

Code: ld b t2

ld c t3

add t2 t3 t1

Node d:

Temp: d

Type: l-value

Code: --

Node 1:

Temp: 1

Type: constant

Code: --

Node +(parent of d,1):

Temp: t4

Type: r-value

Code: ld d t5

add t5 1 t4

Node *:

Temp: t6

Type: r-value

Code: ld b t2

ld c t3

add t2 t3 t1

ld d t5

add t5 1 t4

mul t1 t4 t6

Node :=:

Temp: N/A

Type: N/A

Code: ld b t2

ld c t3

add t2 t3 t1

ld d t5

add t5 1 t4

mul t1 t4 t6

st t6 a

Acceptable if you just write the final answer shown
in bold blue text. The order of traversal (postorder),
generating code (left subtree followed by right
subtree followed by self) must be adhered to. The
order of generating temporaries and using them
must be consistent.

Assignment 1 – Q5 (5 mins)

• Your language has a looping construct like C’s do-while construct:

do{S1;…;Sn;}while(cond1); Statements S1…Sn are executed once before evaluating the

condition cond1. The statements are executed repeatedly till the condition cond1 becomes false.

• Pascal has the repeat-until construct:

repeat{R1;…;Rn;}until(cond2); Statements R1…Rn are executed once before evaluating the

condition cond2. The statements are executed repeatedly till the condition cond2, becomes true.

• Now, you want to remove the do-while feature in your language and introduce a repeat-

while construct:

repeat{T1;…;Tn;}while(cond3); Statements T1…Tn are executed once before evaluating the

condition cond3. The statements are executed repeatedly till the condition cond3 becomes false.

What phase(s) of the compiler you must change to implement the repeat-while construct?

(explanation in support of your choices are welcome).

10

Assume keywords cannot be used as identifiers in your language

Assignment 1 – Q5 (answer)
• Your language has a looping construct like C’s do-while construct:

do{S1;…;Sn;}while(cond1); Statements S1…Sn are executed once before evaluating the

condition cond1. The statements are executed repeatedly till the condition cond1 becomes false.

• Pascal has the repeat-until construct:

repeat{R1;…;Rn;}until(cond2); Statements R1…Rn are executed once before evaluating the

condition cond2. The statements are executed repeatedly till the condition cond2, becomes true.

• Now, you want to remove the do-while feature in your language and introduce a repeat-

while construct:

repeat{T1;…;Tn;}while(cond3); Statements T1…Tn are executed once before evaluating the

condition cond3. The statements are executed repeatedly till the condition cond3 becomes false.

What phase(s) of the compiler you must change to implement the repeat-while construct?

(explanation in support of your choices are welcome).

11

Assume keywords cannot be used as identifiers in your language

notice that meaning of do-while and repeat-while stays the same. Only the keyword has changed. At the least,
the lexer must be modified. Parser may or may not be modified: You should remove the string “do” from the
list of keywords in your lexer. In your lexer, you may return token DO when string “repeat” is seen in program
text. This way, the parser need not be modified. If you want to make your compiler more readable, you return
token REPEAT from lexer and then your parser has to declare %token REPEAT and hence, requires changes.

Marking criteria: -0.25 if parser is mentioned but no explanation is given. -0.25 is semantic routines or any other
modules are mentioned.

	Slide 1: CS323: Compilers Spring 2023
	Slide 2: Assignment 1 – Q1 (6 mins)
	Slide 3: Assignment 1 – Q1 (common mistakes)
	Slide 4: Assignment 1 – Q2 (12 mins)
	Slide 5: Assignment 1 – Q2 (answer)
	Slide 6: Assignment 1 – Q3 (8 mins)
	Slide 7: Assignment 1 – Q3 (answer)
	Slide 8: Assignment 1 – Q4 (12 mins)
	Slide 9: Assignment 1 – Q4 (answer)
	Slide 10: Assignment 1 – Q5 (5 mins)
	Slide 11: Assignment 1 – Q5 (answer)

