
Software Engineering

CS305, Autumn 2020

Week 7

Nikhil Hegde, IIT Dharwad 1

Class Progress…

• Last week:

– Architectural styles
• Shared services and servers, repository, layered

– Detailed design
• Design patterns

• Singleton

Nikhil Hegde, IIT Dharwad 2

Class Progress…

• This week:

– Design patterns, Design principles, Rational Unified
Process

Nikhil Hegde, IIT Dharwad 3

Factory Method Pattern

• Intent: define an interface for creating an object, and let
applications decide which object type to create.

• Applicability
– When the exact type of object to be created is known at runtime

– When a class needs control over object creation

– When a class wants subclasses to specify the types of objects it creates

Nikhil Hegde, IIT Dharwad 4

ConcreteProduct

Product

ConcreteCreator

+ FactoryMethod()

{return new ConcreteProduct}

Creator
+ FactoryMethod()

Factory Method Pattern

Nikhil Hegde, IIT Dharwad 5

Comment about the structure of VehicleFactory?

Strategy Pattern

• Intent: encapsulate each one of a family of algorithms in a
separate class and make their usage agnostic

• Applicability

Nikhil Hegde, IIT Dharwad 6

Context

ConcreteStrategy2

+ AlgorithmInterface()

Algorithm

+ AlgorithmInterface()+ ContextInterface()

ConcreteStrategy1

+ AlgorithmInterface()

. . .

Some Commonly Used Patterns

• Visitor – separate the algorithm from the data structure
on which it operates e.g. finding minimum in a binary
tree, finding maximum in a binary tree, finding multiples
of a given number in a binary tree.

• Observer - notify dependents when object changes

• Iterator – access elements of a collection without
knowing about underlying representation

• Proxy – a surrogate controls access to an object

Nikhil Hegde, IIT Dharwad 7

Choosing a Pattern

• Broad guidelines

– Understand design context

– Examine the patterns catalogue

– Identify and study related patterns

– Apply suitable pattern

• Avoid:

– Overusing patterns

Nikhil Hegde, IIT Dharwad 8

Design Principles

• Performance vs. Maintainability tradeoff
– Performance goal: localize critical operations and minimize

communications. Therefore, use coarse-grain rather than fine-grain
components. Coarse-grain components are difficult to maintain

– Maintainability goal: use fine-grain, replaceable components. Fine-
grain components localize communication

• Security vs. Availability tradeoff
– Security goal: secure critical assets in the inner layers when using a

layered architecture.
– Availability goal: include redundant components and mechanisms

for fault tolerance. Redundant components increase availability.
However, security becomes difficult.

• Safety vs. Communication/Performance tradeoff
– Safety goal: localize safety-critical features in a small number of sub-

systems. Localizing means more communication and hence,
degraded performance.

Nikhil Hegde, IIT Dharwad 9

Design Principles

• Balance coupling and cohesion with non-
functional requirements

• Consider information hiding

– Provide abstraction / refinement

• Document design decisions (design rationale)

Nikhil Hegde, IIT Dharwad 10

Design Principles

• Coupling vs. Cohesion

– Recall that coupling is the extent to which two components
depend on each other for successful execution. Low
coupling is good

– Recall that Cohesion is the extent to which a component
has a single purpose or function. High cohesion is good

Nikhil Hegde, IIT Dharwad 11

• consider low coupling/high cohesion
– module should be ‘stand alone’, errors contained as

much as possible

• consider requirements
– change in requirements should minimize number of

modules affected
Nikhil Hegde, IIT Dharwad

12
slide courtesy: Alex Orso

Design Decisions - dimensions

• Architecture level:
– Choose from repository, service, layered, …

• Component level:
– identify components

• Connector level: determine control model
– Choose from centralized, event-driven, …

• Subsystem level:
– Choose from behavioral, object, … models

Nikhil Hegde, IIT Dharwad 13

Design Principles - SOLID

• Single-responsibility Principle

– “A class should have single responsibility” – to prevent
from side-effects resulting from future requirements
changes

• Open-Closed Principle

– “Software entities (classes, modules, functions, etc.)
should be open for extension, but closed for
modification.” – should be able to add new
functionality without modifying existing code

Nikhil Hegde, IIT Dharwad 14

Design Principles - SOLID

• Liskov-Substitution Principle

– objects of a superclass shall be replaceable with objects of its
subclasses without breaking the application

– Pretty similar to Bertrand Meyer’s design-by-contract principle

• Interface Segregation principle

– “Clients should not be forced to depend upon interfaces that
they do not use.”

• Dependency Inversion Principle

1. High-level modules should not depend on low-level modules.
Both should depend on abstractions.

2. Abstractions should not depend on details. Details should
depend on abstractions.

15

Further reading: https://stackify.com/solid-design-principles/
Nikhil Hegde, IIT Dharwad

• So far:

– Requirements Modelling, Analysis, and Design in detail and
little bit of Coding and Functional Testing

• Next:

– a software process model that binds these activities and
other ones in SDLC

Nikhil Hegde, IIT Dharwad 16

Unified Software Process

• The starting point was in 1997 when Rational
proposed 6 best practices in modern software
engineering

• It is a generic framework rather than a process

– Rational Unified Process (RUP) is a refinement and the best
known example of Unified Software Process

– OpenUP, Agile Unified Process are other examples

Nikhil Hegde, IIT Dharwad 17

6 Best Practices in Software
Engineering

1. Develop iteratively with risk as the primary driver for the
iteration

2. Manage requirements - updating and maintaining
traceability information that associates requirements with
other artifacts

3. Employ a component-based architecture – high-level design
involving components and their interactions.

4. Model software visually - use visual diagrams e.g. UML
diagrams so that the artifacts can be easier to understand
and agreed upon among stakeholders

5. Continuously verify quality throughout development process

6. Control changes using change management tools

Nikhil Hegde, IIT Dharwad 18

RUP – Key features

• Process model
– Describes ordered set of phases and when to transition from

one phase to another

• Component based
– Components are the building blocks and well-defined interfaces

must exist to enable inter-component communication

• Tightly related to UML
– Relies extensively on UML diagrams and notation

• Distinguishing features
– Use-case driven,

– architecture-centric, and

– iterative and incremental
Nikhil Hegde, IIT Dharwad

19

RUP – Distinguishing features

• Use case driven

– Use cases are central elements of the entire RUP lifecycle

– A software system performs some sequence of actions in
response to user inputs

– Recall that use cases capture these interactions and for each
user

Nikhil Hegde, IIT Dharwad 20

RUP – Distinguishing features

• Architecture centric

– Architecture is the high-level view of the principal design
decisions that you make

– Use cases define functionality, whereas architecture defines
form i.e. how the software must be structured to provide that
functionality

– Focuses on an incremental / iterative approach:
• First prepare a rough outline of the system e.g. what platform to run

on? What styles to choose from? etc.

• Next pick a key use case and draw the model e.g. withdrawal feature in
Banking system

• Then refine the architecture by adding additional use cases

Nikhil Hegde, IIT Dharwad 21

RUP – Distinguishing features

• Iterative and Incremental

Nikhil Hegde, IIT Dharwad 22

• An RUP life cycle is broken down into multiple cycles (also called as increments)
• Each cycle / increment includes all phases (inception, elaboration, construction,

transition) of the process. Hence, results in a product release (internal / external)
• Each phase involves multiple iterations that identify a use case

Lifetime of a software project

Cycle/Increment 1 Cycle/Increment 2 Cycle/Increment N. . .

Inception Elaboration Construction Transition

Iteration 1 Iteration 2 Iteration N. . .

time

RUP Phases

Nikhil Hegde, IIT Dharwad 23

pic source:
https://www.ibm.com/developerworks/rational/library/content/03July/1000/1251/1251_bestpractices_TP026B.pdf

RUP Phases – a different perspective

Nikhil Hegde, IIT Dharwad 24

pic source: Alex Orso, CS3300 and material from Ian Sommerville and Spencer Rugaber

RUP Iterations

• What happens in an iteration?

1. Define uses cases - which pieces of functionality this iteration
represents

2. Followed by design that is guided by the chosen arch. (use cases +
architecture = design)

3. Then implement the design that results in software components

4. Then verify components against use cases - testing or other

5. Then release - most often the release is for internal / stakeholders
to get feedback
Release contains requirements spec, code, manuals, use cases, non-functional
specs, test cases,

Nikhil Hegde, IIT Dharwad 25

