
Software Engineering

CS305, Autumn 2020

Week 6

Nikhil Hegde, IIT Dharwad 1

Class Progress…

• Last week:

– Logistics: feedback on PA0, PA1 posted

– Design: Architectural Design and Styles

Nikhil Hegde, IIT Dharwad 2

Class Progress…

• This week:

– Architecture Styles (continued)

– Detailed Design

Nikhil Hegde, IIT Dharwad 3

Architectural Styles Recap..

• Popular way of making architectural design decisions to
structure the system

• Result in elegant, scalable, evolvable, etc. software
solutions

Nikhil Hegde, IIT Dharwad 4

Architectural Styles

• More widely used styles of structuring a software
system

– Shared data repository Style

– Shared services and servers style

– Abstract machine or layered style

Nikhil Hegde, IIT Dharwad 5

Repository Model

• How is data exchanged among subsystems?
– Data is held in a central Database and all sub-modules access the

Database

– Each submodule maintains its own Database and passes data explicitly to
the sub-module that needs it.

• Pros (central Database):
– Can share large amount of data efficiently

– Sub-modules are free from the responsibilities of data management

– Easy integration

• Cons
– Sub-modules must all agree on a common data model

– Data evolution is difficult and expensive

– Customization of data management policies is not possible

Nikhil Hegde, IIT Dharwad 6

Repository Model

Nikhil Hegde, IIT Dharwad 7

• E.g. Language Processing System

Abstract
Syntax

tree

Grammar
Definition

Symbol
Table

Output
Definition

Optimizer

Code
GeneratorEditor

repository

Lexical
Analyzer

Semantic
Analyzer

Pretty
printer

Layered Model

• How are different subsystems interfaced?

– Each layer provides a specific set of services

• Pros:

– Supports incremental development of subsystems in
different layers.

• Cons:

– May introduce performance overhead due to layers of
abstraction

Nikhil Hegde, IIT Dharwad 8

Layered Model

• E.g. Version Control System

Nikhil Hegde, IIT Dharwad 9

Configuration Management System Layer

Object Management System Layer

Database System Layer

Operating System Layer

Detailed Design

• Is the process of specifying logical behavior of each
component

• Typical activities:

– Algorithm selection

– Data structure selection

• How is it expressed?

– Combination of pseudocode, natural language, graphical
representation (e.g. behavioral, structural diagrams)

Nikhil Hegde, IIT Dharwad 10

Review – Modeling and UML

Nikhil Hegde, IIT Dharwad 11

Library Information System

• A software system for managing the information
resources for a library

• Activity: creating a UML class diagram that models
the problem

– Include classes, their attributes and operations and the
relationships among them

– Indicate attribute types, cardinality of associations,
generalization and aggregation relationships

Nikhil Hegde, IIT Dharwad 12

Library Information System -
Requirements

1. Each patron has one unique library card for as long as they are in the system.

2. The library needs to know at least the name, address, phone number, and library card number
for each patron.

3. In addition, at any particular point in time, the library may need to know or to calculate the
items a patron has checked out, when they are due, and any outstanding overdue fines.

4. Children (age 12 and under) have a special restriction–they can only check out five items at a
time.

5. A patron can check out books or audio/video materials.

6. Books are checked out for three weeks, unless they are current best sellers, in which case the
limit is two weeks.

7. A/V materials may be checked out for two weeks.

8. The overdue fine is ten cents per item per day, but cannot be higher than the value of the
overdue item.

9. The library also has reference books and magazines, which can’t be checked out

10.A patron can request a book or A/V item that is not currently in.

11.A patron can renew an item once (and only once), unless there is an outstanding request for
the item, in which case the patron must return it.

Nikhil Hegde, IIT Dharwad 13

Library Information System - Nouns

1. Each patron has one unique library card for as long as they are in the system.

2. The library needs to know at least the name, address, phone number, and library card number
for each patron.

3. In addition, at any particular point in time, the library may need to know or to calculate the
items a patron has checked out, when they are due, and any outstanding overdue fines.

4. Children (age 12 and under) have a special restriction–they can only check out five items at a
time.

5. A patron can check out books or audio/video materials.

6. Books are checked out for three weeks, unless they are current best sellers, in which case the
limit is two weeks.

7. A/V materials may be checked out for two weeks.

8. The overdue fine is ten cents per item per day, but cannot be higher than the value of the
overdue item.

9. The library also has reference books and magazines, which can’t be checked out

10.A patron can request a book or A/V item that is not currently in.

11.A patron can renew an item once (and only once), unless there is an outstanding request for
the item, in which case the patron must return it.

Nikhil Hegde, IIT Dharwad 15

Nouns as candidate classes

• patron, library card, system, library, name, address,
phone number, library card number, time, item, fine,
child, restriction, book, A/V Material, week, best
seller, limit, day, cent, value, reference book,
magazine, request, age

Alternate Approach: Scenarios

• Write usage scenarios. An actor in a scenario
becomes a candidate class

• E.g.
– A patron attempts to request a book

– A patron checks out a book and an a/v material

– A patron attempts to renew a book

– A patron returns a book

– A librarian runs a report of all patrons with outstanding
overdue fines

– A child attempts to check out 2 books

Candidate Classes

Patron, Child, Item, Book,

LibraryCard, AVMaterial,

ReferenceBook, Magazine,

BestSeller, Fine

Remaining Nouns to be Considered

System, Library, name, address, phone
number, time, fine, libraryCardNumber,
restriction, week, limit, day, cent, value, age,
Request

Attributes

• name, address, phoneNumber

(Patron)

• age (Child)

• libraryCardNumber (LibraryCard)

Remaining Nouns to be Considered

time, fine, restriction, week, limit, day, cent,
value

Nikhil Hegde, IIT Dharwad 20

Utility classes

Utility Classes

Date: time, week, day, limit

Money: fine, cent, value

Remaining Noun to be Considered

restriction

Nikhil Hegde, IIT Dharwad 22

Inferred Attributes

• Some other attributes can be inferred from the
requirements:

Noun/Data type Parent
Class

Inferred from
requirement #

dueDate / Date Item 3, 8

numberOfTimesRenewed / int Item 11

checkedOut / bool Item 3-7,9-11

Checkoutable / bool Item 9

Library Information System - Verbs /
Verb Phrases

1. Each patron has one unique library card for as long as they are in the system.

2. The library needs to know at least the name, address, phone number, and library card number
for each patron.

3. In addition, at any particular point in time, the library may need to know or to calculate the
items a patron has checked out, when they are due, and any outstanding overdue fines.

4. Children (age 12 and under) have a special restriction–they can only check out five items at a
time.

5. A patron can check out books or audio/video materials.

6. Books are checked out for three weeks, unless they are current best sellers, in which case the
limit is two weeks.

7. A/V materials may be checked out for two weeks.

8. The overdue fine is ten cents per item per day, but cannot be higher than the value of the
overdue item.

9. The library also has reference books and magazines, which can’t be checked out

10.A patron can request a book or A/V item that is not currently in.

11.A patron can renew an item once (and only once), unless there is an outstanding request for
the item, in which case the patron must return it.

Nikhil Hegde, IIT Dharwad 24

Operations
• query: itemsCheckedOut

• query: whenDue

• query: outstandingOverdueFines

• checkOut

• request

• renew

• return

Operations

Inferred Operations

• Whether or not an Item can be checked out

• The checkout period for an Item

• The per day fine for an Item

• Whether an Item has been renewed

Associations

• Checking out an item is associated with Patron and
an Item.

• Likewise for Request

Associations

• Items can be checkoutable or non checkoutable

Refining Associations

• Not all Items can be checkoutable!

Refining Class Diagram

• A Patron checks out a Title! And not really an item (there

can be more than one copy of the item).

Refining Class Diagram – association
class

• dueDate is not really an attribute of LoanableItem

Refining Class Diagram

Refining Class Diagram - cardinality

• How many entities are involved in a relationship

– E.g. for each item there is only one title. For a title, there can
be several items (denoted by *).

**

1
*

Refining Class Diagram – Derived
Attributes

• age can be derived from DOB,similarly fine can be derived from
whenReturned

**

1
*

Missing Requirements

• The system should provide operations for the
Patron to make or cancel a request

• The system should provide an operation for a
Patron to renew an Item

• The system should allow a Patron to pay a fine

Design Patterns

• General, reusable solutions for commonly occurring design
problems
– Reuse design solutions that have worked in the past and build

upon them

• Goal: effective design for software systems
– Avoid “reinventing the wheel”

• Span a broad spectrum of abstraction and application:
– Architectural patterns

– Component patterns (also referred to as design patterns)

– Interface design patterns

– Webapp patterns

– Mobileapp patterns

Nikhil Hegde, IIT Dharwad 37

Design Patterns - History

• 1977: Christopher Alexander introduces the idea of patterns: “A
Pattern Language”

• 1987: Cunningham and Beck use Alexander’s ideas and create
5-pattern language for Smalltalk programmers

• 1987: Erich Gamma’s thesis on importance of patterns and how
to capture them

• 1992: Jim Coplien’s book “Advanced C++ Programming Styles
and Idioms”

• 1994: Gamma, Helm, Johnson, and Vlissides publish “Design
Patterns: Elements of Reusable Object-Oriented Software”
– Gang of Four (GOF) book

– A catalogue of patterns

Nikhil Hegde, IIT Dharwad 38

GoF Book – A Patterns Catalogue

• Focus on patterns that are relevant to object oriented
design

• Classified based on purpose:

– Fundamental Patterns – basic ones

– Creational Patterns – support object creation

– Structural Patterns – support putting objects together /
composing

– Behavioral Patterns – focus on realizing interaction of
objects

– Concurrency Patterns – support concurrency

Nikhil Hegde, IIT Dharwad 39

Patterns Catalogue

Nikhil Hegde, IIT Dharwad 40

Delegation Pattern
Interface Pattern

Proxy Pattern

Fundamental Patterns
Abstract Factory
Factory Method

Singleton

Creational Patterns
Bridge Pattern

Adapter Pattern
Decorator Pattern

Structural Patterns
Delegation Pattern
Interface Pattern

Proxy Pattern

Fundamental Patterns Abstract Factory
Factory Method

Singleton
Lazy Initialization

Creational Patterns

Chain of Responsibility
Iterator

Observer
State

Strategy
Visitor

Behavioral Patterns

Active Object
Monitor Object

Thread Pool

Concurrency Patterns

Patterns - Format

Nikhil Hegde, IIT Dharwad 41

• Name

• Intent:
design issue or problem

• Also known as:
other names for

• Motivating scenario

• Applicability/context

• Structure:
static object model

• Participants:
description of classes

• Collaborations:
event traces

• Consequences:
tradeoffs

• Implementation strategy:
in various languages

• Sample code

• Known uses:
in existing systems

• Related patterns

Patterns - Format

Nikhil Hegde, IIT Dharwad 42

• Name

• Intent:
design issue or problem

• Also known as:
other names for

• Motivating scenario

• Applicability/context

• Structure:
static object model

• Participants:
description of classes

• Collaborations:
event traces

• Consequences:
tradeoffs

• Implementation strategy:
in various languages

• Sample code

• Known uses:
in existing systems

• Related patterns

Singleton Pattern

• Ensure only one instance of a class is created

Nikhil Hegde, IIT Dharwad 43

Singleton

- instance : Singleton

- SingletonClass()
+ GetInstance() : Singleton

SingletonDemo

+ main() : void

requests

