
Software Engineering

CS305, Autumn 2020

Week 5

Nikhil Hegde, IIT Dharwad 1

Class Progress…

• Last week:

– Unified Modeling Language (UML) behavioral diagrams

– Testing Overview and System Testing

– Generating Test Cases from Software Specifications
• General Approach

• Partition Category Method

• Tool: TSL Generator for generating test specs using Partition
Category method

Nikhil Hegde, IIT Dharwad 2

Class Progress…

• This week:

– Feedback on PA0 (SRS)

– Software System Design
• Architectural (high-level) design

Nikhil Hegde, IIT Dharwad 3

Feedback on PA0

• What went well

– Identifying what each of the sections in SRS were asking for.
• Purpose, Scope, User and Software Interfaces, User Characteristics,

Functional/Non-Functional Requirements

– Very creative functional and non-functional requirements:
• E.g. Demo of tool, Data cleanup on uninstallation,

• E.g. DBMS interfacing, GUI addition, spell-checkers, extended
statistics

Nikhil Hegde, IIT Dharwad 4

Feedback on PA0

• What did not go well
– 82% participation

– Not asking questions (to the customer) about what is required and
what is not required as part of deliverables

• E.g. ignoring the requirement that the program should be able to run
on the command line

– Not specifying OS name and the command line software in
“software interfaces”

– Combining multiple functional requirements

– Overlooking mandatory requirements

– Forgetting to rename SRS_Template.md

Nikhil Hegde, IIT Dharwad 5

who is the customer?

Feedback on PA0

• Essential stuff:
1. What is the software supposed to do?

e.g. compute average length of sentences (in words)

2. Why is the software required?
e.g. to enable college students to analyze their essays

3. How is the software supposed to be used (by the user)?
e.g. run the software using a terminal (another piece of software), pass
certain parameters, observe the output on the terminal

• Guideline:
– Scope, Purpose: 1, 2

– User Requirements: 1, 2, 3

– System Requirements: 1, 2, 3

Nikhil Hegde, IIT Dharwad 6

Software Design

Nikhil Hegde, IIT Dharwad 7

Software Design

• An activity focusing on organizing the system to
satisfy functional and non-functional requirements

• Input to this activity:
– SRS document (focused on what to do)

• Output from this activity: a blueprint
– Design document(s) (focusing on how to do it)

– Should capture:
• Structure

• Behavior

• Interaction

• Non-functional properties

Nikhil Hegde, IIT Dharwad 8

Why is Design Important?

• Good design

➢easier to implement / code

➢easier to make changes to the code

➢easier to test

➢easier to maintain

➢easier to understand the impact of requirements changes

Nikhil Hegde, IIT Dharwad 9

Does good design mean successful software?

Design Decisions and Impact

• Face thousands of design decisions in a large project

– E.g. what data structure to use? Whether to allocate
memory on stack or heap? What and how many
parameters should a function accept? etc.

• Most decisions do not have an impact on the
software success

• Some do have an impact – architectural decisions

– Changes to these affect a large part or the whole system

Nikhil Hegde, IIT Dharwad 10

Design Overview

• Architectural (high-level) design
– Decompose the system into modules / components

– Identify connections / interactions between them

• Detailed (low-level) design

– Choose data structures

– Select algorithms, protocols

• (when applicable) User Interface (UI) design

• Test the Design – make sure that the design meets functional and
non-functional requirements

Nikhil Hegde, IIT Dharwad 11

Software Architecture - Distinctions

• Prescriptive:

– as-conceived Software Architecture (SWA)

– Captures design decisions made prior to software
construction

• Descriptive

– as-implemented SWA

– Describes how the system has been built actually

• Often there is a gap / inconsistency between
Prescriptive and Descriptive SWA

Nikhil Hegde, IIT Dharwad 12

SWA Evolution

• SWA is not defined once. You do it iteratively, over time

• Ideally, prescriptive architecture should be modified
first (e.g. changing the blueprint of a building)

• In software, often, descriptive architecture changes
first and then the prescriptive architecture

– Developer sloppiness

– Tight deadlines

– Non-existent prescriptive architecture etc.

Nikhil Hegde, IIT Dharwad 13

SWA Evolution

• Important related concepts:

– architectural drift
• Introducing architectural design decisions

orthogonal to system’s prescriptive architecture
– E.g. erecting ad-hoc structures

– architectural erosion
• Introducing architectural design decisions that

violate a system’s prescriptive architecture
– E.g. cementing the chariot wheel

Nikhil Hegde, IIT Dharwad 14

cemented to floor

pic source: https://en.wikipedia.org/wiki/Hampi

SWA Ideal Characteristics

• Scalability
– Ability of the software to handle growth e.g. adding more web servers to

handle increased load in a web-based architecture.

• Cohesion
– Measure of how strongly related are the elements of a module. Desired:

high cohesion (e.g. a module should have a bunch of highly cooperating
elements rather than independent, unrelated pieces)

• Coupling
– Measure of how strongly related are different modules in the system.

Desired: low coupling (e.g. to understand a module, one should not have
to look at several modules)

Nikhil Hegde, IIT Dharwad 15

Example

Nikhil Hegde, IIT Dharwad 16

High cohesion, low coupling Low cohesion, high coupling

Example

Nikhil Hegde, IIT Dharwad 17

class A {
string attr1;
char attr2;
int attr3;

public:
void Method1(); //uses attr1
void Method2(); //uses attr2
void Method3(); //uses attr3

};

Low cohesion

class A {
string name;
char gender;
int age;

public:
string GetName(); //uses name
char GetGender(); //uses gender
int GetAge(); //uses age
void SetName(string); //uses name
void SetGender(char); //uses gender
void SetAge(int); //uses age,

};

exercise: is this low cohesion?

Example

Nikhil Hegde, IIT Dharwad 18

class A {
string attr1;
char attr2;
int attr3;

public:
void Method1(); //uses B object’s attr1
void Method2(); //calls B object’s method2

};

High coupling
class B {
public:

string attr1;
char attr2;
void Method1();
void Method2();
void Method3();

};

Class A Class B
uses implements

interface X

Low coupling*

* refer to week3, slides 36,37 for notation (arrows and circles)

SWA Elements

• SWA captures the composition and interplay of
different elements:

– Processing elements
• Perform transformation on data

– Data elements
• Contain the data or information. Also called state.

– Interaction elements
• Glue that holds together different pieces of SWA

• Components contain (Processing + Data) elements

• Connectors maintain and control interaction elements

Nikhil Hegde, IIT Dharwad 19

Systems configuration

SWA Elements

1. Components:
– Encapsulates a subset of system’s functionality and / or data

– Restricts access to that subset via an explicitly defined
interface

2. Connectors
– Effects and regulates interaction among components
E.g. dependencies of components on execution environments, procedure
calls, shared data accesses (e.g. global variables)

3. Configuration
– Set of specific associations between components and

connectors

Nikhil Hegde, IIT Dharwad 20

Deployment Architecture

• Physically placing the modules on hardware

– Mapping of components and connectors to specific hardware
/ execution elements

– Do we have enough processing power? Memory? Battery
power?

Nikhil Hegde, IIT Dharwad 21

Application
Server

Data
Server

Mobile app

<<REST>>

<<device>>

<<JDBC>>

Architectural Styles

• Popular way of making architectural design decisions to
structure the system

• Result in elegant, scalable, evolvable, etc. software
solutions

“a family of systems in terms of a pattern of structural
organization; a vocabulary of components and connectors, with
constraints on how they can be combined” - Shaw and Garlan, 1996

Nikhil Hegde, IIT Dharwad 22

Architectural Styles - Examples

• Pipes and Filter
– Chain of processing elements, output of one element input into the next

element. Usually a buffer exists in between consecutive elements

– E.g. Compilers, Linux pipes

• Event-Driven
– Event emitters send out event notifications and event listeners listen and

react to the events

– E.g. back-end processing in reaction to a push button on a GUI

• Publish-subscribe
– Senders associate messages with ‘tags’ and subscribers express interest

in those ‘tags’. Senders do not send message to specific receivers.

– E.g. Twitter

Nikhil Hegde, IIT Dharwad 23

Architectural Styles - Examples

• Client-Server
– Server provides resources and functionality, Client initiates request to

access the resources and use the functionality.

– E.g. Email

• Peer-to-Peer
– Independent ‘nodes’ in a network (called peers) are both consumers and

suppliers of resources. Decentralized as opposed to

– E.g. Skype, Napster

• REST
– Hybrid architectural style for distributed hyper-media systems.

– E.g. World Wide Web

Nikhil Hegde, IIT Dharwad 24

