
Software Engineering

CS305, Autumn 2020

Week 4

Nikhil Hegde, IIT Dharwad 1

Class Progress…

• Last week:

– Requirements Engineering Detailed Steps
• Elicit, Analyze, Specify, Validate, Manage change

– Requirements modeling
• Goal-oriented, text-based methods, graphical based methods

– Object Oriented Analysis and Design – overview
• Object Modeling Technique

• Unified Modeling Language (UML) and structural diagrams

Nikhil Hegde, IIT Dharwad 2

Class Progress…

• This class: UML behavioral diagrams

– Describe behavior or dynamic aspect of the system

– E.g.
Use Case diagram / user stories / scenarios

Nikhil Hegde, IIT Dharwad 3

Use Case Diagrams

• Describes outside view of the system

– Interaction of outside entities (Actors) with the system

– System actions that result in observable actions of value to
the actors

• Notation (important ones):

Nikhil Hegde, IIT Dharwad 4

<use_case_name>

Actor

Use case

<role_name>
Connector between actor and use case
(indicates “is the actor of”)

Actor

• Entity: human or device that interacts with the system

• Plays some role

– Can play more than one role
• E.g. customer of a bank can also be an employee of the bank

(customer and employee are roles)

– More than one entity can play the same role
• E.g. an employee and a regular customer can both play the role of a

customer

– Can appear in more than one use case

Nikhil Hegde, IIT Dharwad 5

Running Example

1. Registrar sets up the curriculum for a semester using a
scheduling algorithm

2. One course may have multiple course offerings (think: sections)

3. Each course offering has a number, location, and time

4. Students register for courses using a registration form

5. Students may add/drop courses for a certain period after
registration

6. Professors use the system to receive their course attendance
sheets / course rosters

7. Users of the system are assigned passwords to validate at
logon

Nikhil Hegde, IIT Dharwad 6

Exercise: Identify Actors

1. Registrar

2. curriculum

3. Semester

4. Scheduling algorithm

5. Course

6. Course offerings

7. Students

8. Registration form

9. Professors

10. Passwords

Nikhil Hegde, IIT Dharwad 7

Exercise: Identify Actors

1. Registrar

2. Curriculum

3. Semester

4. Scheduling algorithm

5. Course

6. Course offerings

7. Students

8. Registration form

9. Professors

10. Passwords

Nikhil Hegde, IIT Dharwad 8

Example Use Case Diagrams

Nikhil Hegde, IIT Dharwad 9

student

registrar

Curriculum
maintenance

professor

Course roster
maintenance

Q: who updates the roster?

Q: how to document the interactions?

Q: how does registrar interact
with the system?

Documenting use case - guidelines

• Describe flow of events either formally or informally

– How the use case starts and ends

– Normal flow of events

– Alternative flow of events

– Exceptional flow of events

• Formal way

– Sequence diagrams, pseudocodes

• Informal way

– Textual description

Nikhil Hegde, IIT Dharwad 10

Documenting use case - example

• Registrar provides a password to

log in to the system

• If the password is valid, the system asks

to specify a semester

• Registrar enters the desired semester, and the system prompts the registrar
to select an activity: ADD / DELETE / REVIEW / QUIT

• When selected ADD / DELETE, the system allows registrar to add / delete a
course

– When done, the system runs the scheduling algorithm

• When selected REVIEW, the system displays the curriculum for that semester

• When selected QUIT, the system logs out the registrar

Nikhil Hegde, IIT Dharwad 11

registrar

Curriculum
maintenance

Use cases - role

• Why important?

– More effective requirements elicitation

– Starting point for analyzing architecture (next topic)

– Identify priority of users (e.g. Registrar. If the registrar
cannot perform his assigned role? How can a student use
the system?)
• Help in better planning

– Help in writing test cases even before the system is defined
/ coded

Nikhil Hegde, IIT Dharwad 12

Use case diagram creation - guidelines

• Choose a name that conveys purpose

• Put a single scenario into a use case

• Define the flow of events clearly - helps understand how
system works

• Omit irrelevant details

• Extract common flow of events among multiple user
interactions to create new use cases i.e. refine e.g. Registrar,

student, professors all log in to the system before performing their roles.

Nikhil Hegde, IIT Dharwad 13

Sequence Diagrams

• Interaction diagram that describes how objects / components
communicate and the ordered sequence of messages that are
exchanged

• Can be used as a formal way to document a use case

Nikhil Hegde, IIT Dharwad 14

Sequence Diagrams - Example

Nikhil Hegde, IIT Dharwad 15

student

Registration
form

Registration
manager

CS101
CS101 –
section 1

1: fill in info

2: submit
(add, Mr. N,

CS101)
3: add Mr. N to CS101

4: are you open?

5: are you open?

6: Ack
7: Ack

8: add Mr. N
9: add Mr. N

10: Added
11: Added

12: Mr. N Added
13: registered

Sequence diagram creation -
guidelines

• Draw objects that participate in the interaction at the top along
X-axis
– Place objects that initiate the interaction towards the left

• Add object lifelines – lines that show the existence of an object
over a period
– Add dashed lines for all except the left-most object

• Place messages from top to bottom
– Annotate messages with numbers for added clarity

• Add focus of control – thin rectangular boxes that indicate the
period when the object is in action

Nikhil Hegde, IIT Dharwad 16

State Transition Diagrams

• Shows possible life history of each object / class

• Defined for each relevant object / class

• Shows:
– States of the class (attributes)

– Events that cause transition from one state to another

– Actions that result from state change

Nikhil Hegde, IIT Dharwad 17

State Transition Diagrams - Notation

• States are indicated as ovals with names written inside

• Transition is indicated as event that triggers the transition.
Indicates passage from one state to another because of some
external stimuli (some events may be consumed within the state itself)

Nikhil Hegde, IIT Dharwad 18

State 1 State 2
event

State Transition Diagrams - Notation

• events might also produce actions

• might also have attributes (analogous to method parameters)
and Boolean conditions that indicate that the event is triggered
only when the condition is true

Nikhil Hegde, IIT Dharwad 19

State 1 State 2
event (attr) [cond] /
action

State Transition Diagrams - Notation

• States might also be associated with activities and actions

– activities: operations performed by the object in a given state that take
time to complete

– actions: events that can be triggered upon entry or exit to that state or
in response to specific event caused due to an activity performed

– Numbers indicate the time ordering of actions / activities

Nikhil Hegde, IIT Dharwad 20

State 1
event (attr) [cond] /
1: action

State 2
2: entry / action

3: do: activity
4: event / action 3
5: exit / action 4

State Transition Diagrams - example

Nikhil Hegde, IIT Dharwad 21

cancel

Cancelled
do: notify

registered students

Initialization
do: initialize the

course

Add student /
set count = 1

Open
entry: register

student

add student
[count < 10] /
increment count

[count = 10]

close
do: finalize

course

cancel

Nikhil Hegde, IIT Dharwad 22

Users of a Requirements Document

pic source: Software Engineering, Ian Sommerville

SRS Summary

• Way to communicate requirements to others

• Different projects require different SRSs depending
upon the context e.g. small vs. large teams

Nikhil Hegde, IIT Dharwad 23

Time to turn things around… a bit.

Nikhil Hegde, IIT Dharwad 24

Write tests before you code and then code to make the tests pass

• Is a kind of verification technique

– Recall: verification is checking against requirements

• Is executing the program on a tiny sample of the
input domain

– It is a dynamic technique: you need to execute the
program

– It is an approximation technique: for all other inputs, you
expect the behavior of the program to be consistent with
the samples tested

Testing

Nikhil Hegde, IIT Dharwad 25

• Goal is to uncover bugs in the program

“A test is successful if the program fails” –
Goodenough and Gerhart

Testing

Nikhil Hegde, IIT Dharwad 26

• View: software system as a bunch of interacting components

Testing Granularity Levels

Nikhil Hegde, IIT Dharwad 27

System testing

Acceptance testing

customercustomer

Regression testing

Unit testing Integration testing

• Unit Testing

• Testing of individual modules in isolation

Testing Granularity Levels - Overview

Nikhil Hegde, IIT Dharwad 28

• Integration Testing

• Testing of a subset of modules taken together

– Testing for interaction among the modules

– Modules of the subset can be tested one at a time or all
taken together (Big-bang)

Testing Granularity Levels - Overview

Nikhil Hegde, IIT Dharwad 29

• System Testing

• Testing complete system as a whole: functional and
non-functional requirements
– Functional tests: test the functionality provided by the system

– Non-functional tests: assess the “..ility” of the system – usability,
reliability, maintainability etc.. e.g. load and stress tests

Testing Granularity Levels - Overview

Nikhil Hegde, IIT Dharwad 30

• Acceptance Testing

• Testing complete system as a whole: validation of
software against customer requirements

– System does what the customer expects it to do

Testing Granularity Levels - Overview

Nikhil Hegde, IIT Dharwad 31

customercustomer

• Regression Testing

• Testing complete system as a whole: tests that check
if some changes negatively affect the parts that have
not changed

– One of the causes why software maintenance is so
expensive

– Automation is an active research focus area

Testing Granularity Levels - Overview

Nikhil Hegde, IIT Dharwad 32

• Alpha Testing

– Release the software to users within the organization for testing

– Tolerance to bugs is fairly high

• Beta Testing

– Release the software to a selected list of users outside org.

Alpha and Beta Testing

Nikhil Hegde, IIT Dharwad 33

Developers’

Alpha

Beta

Product release

• Two families of test strategies

• Black-box testing: based on functionality

– Do not look inside i.e. the code

– Test against software description

– Cannot reveal errors due to incorrect implementation

• White-box testing: based on code

– test all control paths: sequence of code lines

– Cannot reveal errors due to missing paths i.e. missing
functionality

Black-box and White-box Testing

Nikhil Hegde, IIT Dharwad 34

• Specification: input an integer and print it

• The implementation details are a grey-area
– Cons: miss testing inputs that are > 1024

– Pros: need not know the internal functionality to test

Black-box Testing Example

Nikhil Hegde, IIT Dharwad 35

1. void printNumBytes(int param) {
2. if (param < 1024)
3. printf(“%d”,param);
4. else
5. printf(“%d Kb”,param/124)
6. }

White-box testing
would catch this typo.

• Note: test without a specification

– Execute all statements in the function

– Cons: miss catching an obvious error for a specification: input
an integer and return half the value if even. Unchanged
otherwise.

White-box Testing Example

Nikhil Hegde, IIT Dharwad 36

1. int fun(int param) {
2. int result;
3. result = param / 2;
4. return result;
5. }

Focus: Black-box Testing

Nikhil Hegde, IIT Dharwad 37

• Advantages:

– Focuses on the domain

– Does not need code. Helps you start early. Real advantage in
real-life software development

– Catches logic errors

– Applicable at all granularity levels
We will focus on system testing at this point

Black-box Testing

Nikhil Hegde, IIT Dharwad 38

• Input: Function Spec.

• Output: Test Cases – set of inputs and corresponding outputs that
we use to exercise our code to uncover bugs

• Problem: How do we go from input to output?
– Can be extremely complex

• Solution: break the complexity
– 4 main steps

Black-box Testing – From Spec. to Test
Cases

Nikhil Hegde, IIT Dharwad 39

Software Description
aka. Functional

Specification

Test Cases

• Step 1: identify independently testable features

– May not be possible to test all possible features at once
• e.g. printing receipt after successful ATM transaction

From Spec. to Test Cases

Nikhil Hegde, IIT Dharwad 40

Software Description
aka. Functional

Specification

Independently testable
features

identify

Identifying Independent Features

• How many features here (sum)?

Nikhil Hegde, IIT Dharwad 41

1. int sum(int a, int b) {
2. return a + b;
3. }

Identifying Independent Features

• How many features here (MS-Excel)?

Nikhil Hegde, IIT Dharwad 42

• Step 2: identify relevant inputs. Also called test data selection

• test cases = inputs + expected outputs

From Spec. to Test Cases

Nikhil Hegde, IIT Dharwad 43

Software Description
aka. Functional

Specification

Independently testable
features

Relevant inputs

identify

identify

+ =

Input domain Software Output domain

. .
.

.
.
. . .

.
.

.
.

Test Data Selection – Naïve approach

• Test-them all !
– Consider all inputs from the input domain (exhaustive

testing)

– Lay-man approach

• E.g. How long would it take to test the sum function
exhaustively:

• How can we select interesting inputs?

Nikhil Hegde, IIT Dharwad 44

1. int sum(int a, int b) {
2. return a + b;
3. }

~ 600 years!

Test Data Selection - partitioning

• Insight: failures are not distributed uniformly in the input
domain!

• Identify partitions and select inputs from each partition

Nikhil Hegde, IIT Dharwad 45

pic source: Alex Orso, Software Development Process class notes

Example – partitioning

• Some possible partitions:

Nikhil Hegde, IIT Dharwad 46

1. int Split(string str, int size) {
2. //split the input string str into chunks of

//length size
3. }

• str with length < size
• str with length = [size, sizex2]
• str with length > sizex2

• size < 0
• size > 0
• size = 0

Note that testing for size < 0
overcomes developer bias

Example – partitioning

• All inputs in a sub-domain may not be interesting!
– Errors tend to occur at the boundary of a sub-domain

why? scenarios not well understood by developers

• Some possible inputs (based on partitioning done
earlier):
– size = -1, length of str = size – 1

– size = 1, length of str = size – 1

– size = -1, length of str = size

– size = 1, length of str = size

Key: adapt based on domain and type of data

Nikhil Hegde, IIT Dharwad 47

(consider boundary of size < 0 i.e. size=-1, boundary
of length of str < size i.e. length = size - 1)

(consider boundary of size > 0 i.e. size=1, boundary
of length of str =[size, sizex2] i.e. length = size - 1)

• Step 3: derive test case specifications

From Spec. to Test Cases

Nikhil Hegde, IIT Dharwad 48

Software Description
aka. Functional

Specification

Independently testable
features

Relevant inputs

identify

identify

derive

Test case specifications

Example – deriving test case specs

• Some possible inputs (based on partitioning done earlier):

• Test case specifications:
– size = -1, length(str)=-2

– size = 1, length(str)=0

– size = -1, length(str)=-1

– size = 1, length(str)=1

• Limit the number of test cases generated

Nikhil Hegde, IIT Dharwad 49

str with length = size -1
str with length = size

size < 0,
size > 0,
size = 0

Meaningless to have length(str) < 0
Can prune / remove the test case.

• Step 4: generate test cases from specifications

From Spec. to Test Cases

Nikhil Hegde, IIT Dharwad 50

Software Description
aka. Functional

Specification

Independently testable
features

Relevant inputs

identify

identify

derive

Test case specifications

generateIndependently testable
features

Example – test case generation

• Test case specifications:
– size = 1, length(str)=0

– size = 1, length(str)=1

…

• Instantiate test cases from specs.
– Split(“”,1) //compare the result with expected output

– Split(“a”, 1) //compare the result with expected output

Nikhil Hegde, IIT Dharwad 51

• The previously outlined approach is systematic:

– Decoupling different activities

– Separating analytical-intensive tasks from those that are not

– Monitoring testing process e.g. not generating too many test
cases

From Spec. to Test Cases - Remarks

Nikhil Hegde, IIT Dharwad 52

• Ostrand and Balcer defined it in 1988

• Defines method to create a set of test cases from
specification

• 6 steps:
1. Identify independently testable features

2. Identify categories

3. Partition categories into choices

4. Identify constraints among choices

5. Produce (and evaluate) test case specifications

6. Generate test cases from test case specifications

Black-Box Testing – Category Partition
Method

Nikhil Hegde, IIT Dharwad 53

Seen previously in the
general approach

– Split(string str, int size)

Identify categories - Example

Nikhil Hegde, IIT Dharwad 54

input str:
Has length

Has some content

input size:
Has value

– Split(string str, int size)

Partition categories - Example

Nikhil Hegde, IIT Dharwad 55

input str:
Has length

- 0
-size – 1
. . .

Has some content
- has spaces
- has special characters
. . .

input size:
Has value

- 0
- > 0
- < 0
- MAXINT
. . .

Goal: identify interesting subdomains

• Use properties IF, ERROR, SINGLE

• Goal:

• to eliminate meaningless combinations

• to reduce the number of test cases

Identify Constraints - Example

Nikhil Hegde, IIT Dharwad 56

input str:
Has length

- 0 PROPERTY ZEROVAL
Has some content

- has spaces consider IF !ZEROVAL

input size:
Has value

< 0 ERROR

Split(string str, int size)

consider cases that combine “has spaces” with any
other category except those with property ZEROVAL

Identify Constraints - Example

Nikhil Hegde, IIT Dharwad 57

input size:
Has value
• < 0 ERROR
• = MAXINT SINGLE

Split(string str, int size)

consider cases that combine < 0 only once because we
assume that we want to test error scenario (invalid
parameter value passed) only once

Used to limit the number of test cases. Use this category
only once in any combination of test cases.

• Produces test frames

• Evaluate to see if you end up with too many test cases based on
the combination of categories. If so, add more constraints.

Produce and Evaluate Test Case Specs.

Nikhil Hegde, IIT Dharwad 58

Test Frame #1
input str:

length: size
content: special characters

input size:
value: > 0

Sequence number

• Produces concrete test cases

Produce Test Cases from Specs.

Nikhil Hegde, IIT Dharwad 59

Test Frame #1
str=“hello\nworld”
size=12

Sequence number

Test Specification Generator

• TSL: https://github.com/alexorso/tslgenerator

• Developed by professors from UC Irvine and U
Oregon

• Implements Category-Partition method

Demo

Nikhil Hegde, IIT Dharwad 60

https://github.com/alexorso/tslgenerator

Specification

Nikhil Hegde, IIT Dharwad 61

Output: Test Specs

Nikhil Hegde, IIT Dharwad 62

