
Software Engineering

CS305, Autumn 2020

Week 3

Nikhil Hegde, IIT Dharwad 1

Class Progress…

• Last week:

– Git overview (cloning, commit, tagging, remote repos)

– Requirements Engineering (RE)
• What is it?

• Why important?

• What is the result?

• What are the desired characteristics of requirements?

• Where do the requirements come from?

• What are the different types of requirements?

Nikhil Hegde, IIT Dharwad 2

Class Progress…

• This class
– What are the problems in requirement gathering?

– How are requirements typically captured?

– What are the next steps are gathering requirements?

• Recall (how to get it right?)

– Requirements Engineering involves different activities:
• Elicit, Analyze, Specify, Validate, Manage - Iterate

Nikhil Hegde, IIT Dharwad 3

Elicit

• Gathering requirements from various sources:
– Stakeholders
– Documents

• Manuals, books, papers etc.

– App domain

• Not a straightforward task
– Domain knowledge is

• distributed,
• rarely in written form,
• has conflicts (due to multiple sources),

• is noisy (due to possible behavioral change in actors when you observe them),

• prone to biases (people may try to influence you and omit information)

– Disconnect between perception and practice
• Customer’s perspective of a simple 3 steps might involve N steps in

practice

Nikhil Hegde, IIT Dharwad 4

Elicit - techniques

• Background Reading

– Used when one is not familiar with the org. and used before
interviewing

– Sources: e.g. company annual reports, job descriptions

– Cons: time consuming, may contain irrelevant details, out-of-sync

• Interviewing

– Pros: can uncover a rich set of info through follow-up probing

– Cons: requires specialized skills to interview people

• Collecting facts and figures through hard data and samples

– Which data to collect? What is a sample?

– Sources: financial reports

Nikhil Hegde, IIT Dharwad 5

Elicit – techniques contd..

• Surveys

– Pros: Quickly collect info from large population, remote
administration possible

– Cons: may miss opportunities to collect relevant
information

• Meetings

– Summarization of findings

• Collaborative, Social, and Cognitive Techniques
– E.g. Brainstorming, collecting information about participants by

observing them in their environment, finding problem solving methods
of participants

Nikhil Hegde, IIT Dharwad 6

Elicit – techniques summary

• Traditional Techniques

– Surveys,

– Meetings,

– Hard data and samples,

– Interviewing,

– Background reading

Nikhil Hegde, IIT Dharwad 7

Analysis

• Two tasks primarily:
– Verification

• Developers check for SRS conformation (correctness, performance,
completeness, pertinence etc.)

– Validation
• Check if customers’ needs are satisfied

• Outcomes:
– Feasibility study – checks for time, budget, meeting org.

objectives, system integration requirements etc.

– Risks identified and addressed

– Prioritized list of requirements (mandatory, nice-to-have,
superfluous)

Nikhil Hegde, IIT Dharwad 8

RE Process

• Iterate over the 4 activities of RE and perform change
management

Nikhil Hegde, IIT Dharwad 9

NegotiateElicit

AnalyzeValidate

iterate

Change Management

• Accommodating changing requirements

• Main stages:

– Problem analysis – discuss what is the problem with a
requirement and propose change

– Change analysis and costing – assess effects of change on
other requirements

– Change implementation - modify requirements document
(and other docs) to reflect change

Nikhil Hegde, IIT Dharwad 10

RE in practice

• Note that when you iterate / refine:

– System design may start emerging

– Discover how system inter-operates with other systems
• This generates design requirements

• System component interaction exposes design alternatives,
procedures, data formats, etc.

Nikhil Hegde, IIT Dharwad 11

In practice, you always end up doing a bit of design in
requirements engineering and vice-versa

Requirements Modeling

• Purpose: structured organization of requirements gathered for analysis
and refinement

• Several ways depending upon focus and objectives / depends on what
and how to model.
– Organizational / Enterprise modeling e.g. goal modeling
– Behavioral / Information modeling e.g. sequence, class, structural diagrams
– Modeling quality aspects e.g. task models

They are all complementary. Can have a mix of one or more.

– Goal Modeling is extremely popular,
• a natural way – start with goals and continuously refine them

– Natural language for modeling
– Unified Modeling Language

Nikhil Hegde, IIT Dharwad 12

Requirements Modeling Techniques
Examples

Nikhil Hegde, IIT Dharwad 13

Form-based spec: example
Insulin Pump/Control Software/SRS/3.3.2

Function Compute insulin dose: Safe sugar level

Description Computes the dose of insulin to be delivered when the current measured sugar level is in

the safe zone between 3 and 7 units.

Inputs Current sugar reading (r2), the previous two readings (r0 and r1)

Source Current sugar reading from sensor. Other readings from memory.

Outputs CompDose Š the dose in insulin to be delivered

Destination Main control loop

Action: CompDose is zero if the sugar level is stable or falling or if the level is increasing but the rate of

increase is decreasing. If the level is increasing and the rate of increase is increasing, then CompDose is

computed by dividing the difference between the current sugar level and the previous level by 4 and

rounding the result. If the result, is rounded to zero then CompDose is set to the minimum dose that can

be delivered.

Requires Two previous readings so that the rate of change of sugar level can be computed.

Pre-condition The insulin reservoir contains at lea st the maximum allowed single dose of insulin..

Post-condition r0 is replaced by r1 then r1 is replaced by r2

Side-effects None

source: Software Engineering, Ian Sommerville
Nikhil Hegde, IIT Dharwad 14

Graphical Models

• Easier to consume

• Intuitive

• E.g.

– Sequence diagrams

– Finite state machines

– Data-flow diagrams

Nikhil Hegde, IIT Dharwad 15

Sequence diagram – ATM withdrawal

slide courtesy: Alex Orso
Nikhil Hegde, IIT Dharwad 17

Scenarios

• Effective requirement elicitation technique

• Captures real-world use cases of the system

• Desirable features:

– Description of initial condition

– Description of normal flow of events

– Description of failure scenarios (what can go wrong)

– Information about other activities happening
simultaneously

– Description of end state

Nikhil Hegde, IIT Dharwad 18

Scenarios - Example

• LIBSYS – controlled electronic access to copyright
material from a group of university libraries

Nikhil Hegde, IIT Dharwad 19

Scenarios – Example (contd..)

Nikhil Hegde, IIT Dharwad 20

Use cases

• UML’s scenario-based technique
– actors and interactions

• Should describe all possible interactions with
the system

• Sequence diagrams may be used to add
details to use-cases

Nikhil Hegde, IIT Dharwad 21

LIBSYS use cases

slide courtesy: Alex Orso
Nikhil Hegde, IIT Dharwad 22

Article printing: sequence diagram

slide courtesy: Alex Orso
Nikhil Hegde, IIT Dharwad 23

Object Oriented Modeling

• So far, we looked at requirements from a
functionality / feature perspective

Object Orientation is a shift from this
perspective that emphasizes data over functions

Nikhil Hegde, IIT Dharwad 24

Object Orientation

• What does it mean to think in terms of object
orientation?

1. Give precedence to data over functions (think:

objects, attributes, methods)

2. Hide information under well-defined and stable
interfaces (think: encapsulation)

3. Enable incremental refinement and (re)use (think:

inheritance and polymorphism)

Nikhil Hegde, IIT Dharwad 25

Object Orientation: Why?

Nikhil Hegde, IIT Dharwad 26

– Improve costs
– Improve development process and
– Enforce good design

© Nikhil Hegde 2020

Object Oriented Analysis and Design

• Object orientation lead to OO analysis and design
(OOAD)

– Model a software system as a group of interacting objects

• OOA is a requirements analysis technique that
focuses on modeling real-world objects

• Developed in the 90’s.

• Influential contributors: Rumbaugh, Booch,
Jacobson

Nikhil Hegde, IIT Dharwad 27

Objects and Instances

• Object is a computational unit

– Has a state and operations that operate on the state.

– The state consists of a collection of instance variables or
attributes.

• An instance is a specific version of the object

– Send a “message” to an object to invoke/execute an
operation (message-passing metaphor in traditional OO
thinking)

Nikhil Hegde, IIT Dharwad 28

Classes

• Template or blueprint for creating objects.
Defines the shape of objects

– Has features = attributes + operations

• New objects created are instances of the class

• E.g.

Nikhil Hegde, IIT Dharwad 29

Class - lollypop mould Objects - lollypops

Classes continued..

• Operations => prescription or service provided by
the class to access the state of an object

– Built-in or Primitive types of a language – int, char, float,
string, bool etc. have implicitly defined operations:

• E.g. cannot execute a shift operator on a negative integer

– Composite types (read: classes) have operations that are
implicit as well as those that are explicitly defined.

• Why do we need classes?

– To define user-defined types / invent new types and
extend the language

Nikhil Hegde, IIT Dharwad 30

Object Modeling Technique (OMT)

• Considers 3 aspects while modeling:
1. Data – modeled using extensions to entity-relationship

(ER) diagrams
• Shows classes and inheritance relationships among classes

2. Functions – modeled using data flow diagrams
• A function becomes a method of a class

3. Control – modeled using state machines
• Represents dynamic aspects i.e. how the system evolved in

response to inputs

• Rumbaugh developed it in 90s.

Nikhil Hegde, IIT Dharwad 31

Unified Modeling Language (UML)

• Extends OMT

• Considers various aspects

• Has more diagrams available for modeling

• Jacobson and Booch influential contributors

Nikhil Hegde, IIT Dharwad 32

OO Analysis

• From real-world objects to requirements

• Broad guidelines:

1. Prepare / obtain textual description of the
problem

2. Identify nouns, which become classes

3. Identify adjectives, which become attributes

4. Identify active verbs, which become operations

Nikhil Hegde, IIT Dharwad 33

UML Structural Diagrams
Represent static aspects of the system

Nikhil Hegde, IIT Dharwad 34

Class Diagram

• Static, structural view of the system

• Describes:

1. Classes and their structure

2. Relationships that capture interaction among classes

Nikhil Hegde, IIT Dharwad 35

Class Name

- attribute
- attribute:type = initializer
...

+ operation(arg-list): result-type

Name picked from the domain,
Singular noun, first letter capital

Ellipses. To indicate that there
are more items not listed here

Attribute name followed by an
optional type and an initial
value.Visibility

indicator

Relationships

• Dependencies (“uses”)

• Association / Aggregation (“has a”)

• Generalization (“is a”)

Nikhil Hegde, IIT Dharwad 36

aggregation
association

E.g. Customer uses a MS Word editor
to produce MS Word document

E.g. Apple is a Fruit (Apple and Fruit are
modeled as classes, where Fruit is a super-class
and Apple is a sub-class)

E.g. Every course has a name, credits - aggregation
A student registers for course(s) – association
between student and course

Component Diagrams

• Static view of components and relationships

• Describe:

– Component => set of classes with well-defined interface

– Relationships that capture interactions among
components. The interactions follow a “uses services of”
kind of pattern.

Nikhil Hegde, IIT Dharwad 37

Employee
Administration

Facilities Securityuses

Required interface

Provided interface
<<UI>>

Annotation
Other annotation:
<<database>>,
<<infrastructure>> etc.

Deployment Diagrams

• Static view of components and their physical
mapping to computational units

• Describe:

– Nodes as computational units, to which components are
mapped

– Edges as communication methods or protocols between
computational units

Nikhil Hegde, IIT Dharwad 38

:web server

Employee
Administration
<<UI>>

<<HTTP>>

:web client {OS – Android}
<<device>>

