
Software Engineering

CS305, Autumn 2020

Week 2

Nikhil Hegde, IIT Dharwad 1

Last Week…

• Software Engineering Overview

– What is it? Why needed? How to manage complexity?

– Different software process models

– How to choose a model? factors to consider

– Tools for developer productivity

Nikhil Hegde, IIT Dharwad 2

Git

• Version Control System

– Manage versions of your code – access to
different versions when needed

– Lets you collaborate

• ‘Repository’ – term used to represent storage

– Local and Remote Repository

3Nikhil Hegde, IIT Dharwad

mypc01
Github.

com

Remote Local

Your desktop,
laptop, server

Git – Creating Repositories

• Two ways:

1. ‘Clone’ / Download an existing repository from
GitHub

2. Create local repository first and then make it
available on GitHub

4Nikhil Hegde, IIT Dharwad

git clone for creating local working
copy

– ‘Clone’ / Download an existing repository from
GitHub – get your own copy of source code

• git clone (when a remote repository on GitHub.com
exists)

5Nikhil Hegde, IIT Dharwad

Git init for initializing local
repository

– Create local repository first and then make it
available on GitHub

1. git init - converts a directory to Git local repo

6Nikhil Hegde, IIT Dharwad

git add for staging files

2. git add – ‘stage’ a file i.e. prepare for saving the file
on local repository

Note that creating a file, say, README2 in dem0 directory
does not automatically make it part of the local repository

7Nikhil Hegde, IIT Dharwad

git commit for saving changes in
local repository

3. git commit – ‘commit’ changes i.e. save all the
changes (adding a new file in this example) in the local
repository

8Nikhil Hegde, IIT Dharwad

How to save changes done when you must overwrite an existing file?

4. git branch –M master – rename the current as
‘master’ (-M for force rename even if a branch by that
name already exists)

9Nikhil Hegde, IIT Dharwad

5. git remote add origin
git@github.com:IITDhCSE/dem0.git – prepare the
local repository to be managed as a tracked repository

10Nikhil Hegde, IIT Dharwad

command to manage
remote repo.

associates a name
‘origin’ with the
remote repo’s URL

The URL of the repository on
GitHub.com.
• This URL can be that of any other

user’s or server’s address.
• uses SSH protocol

• HTTP protocol is an
alternative. Looks like:
https://github.com/IITDhCSE
/dem0.git

git push for saving changes in
remote repo

6. git push –u origin master – ‘push’ or save all the
changes done to the ‘master’ branch in local repo to remote
repo. (necessary for guarding against deletes to local repository)

syntax: git push <remotename> <branchname>

11Nikhil Hegde, IIT Dharwad

what does the –u option do?

Git – Releasing Code

– Tagging
• Check for unsaved changes in local repository.

• Create a tag and associate a comment with that tag

• Save tags in remote repository

12Nikhil Hegde, IIT Dharwad

• Please read https://git-scm.com/book/en/v2
for details

Git – Recap..

1. git clone (creating a local working copy)
2. git add (staging the modified local copy)
3. git commit (saving local working copy)
4. git push (saving to remote repository)
5. git tag (Naming the release with a label)
6. git push --tags (saving the label to remote)

13Nikhil Hegde, IIT Dharwad

https://git-scm.com/book/en/v2

Requirements Engineering

• Why Engineering?

Nikhil Hegde, IIT Dharwad 14

Requirements Engineering – Recall..

• Establish stakeholders’ needs that are to be satisfied
by the software

• Why Important?

– Cost of correcting errors

• Grows exponentially as we move to maintenance phase

• How to get it right?

– Elicit, Analyze, Specify, Validate, Manage - Iterate

Nikhil Hegde, IIT Dharwad 15

Requirements Engineering (RE)

Nikhil Hegde, IIT Dharwad 16

Requirements Engineering (RE) is a set of activities
concerned with identifying and communicating the
purpose of a software-intensive system, and the
contexts in which it will be used. Hence, RE acts as
the bridge between the real-world needs of users,
customers, and other constituencies affected by a
software system, and the capabilities and
opportunities afforded by software-intensive
technologies

Not a stage / phase

Communicating is as
important as analysis

Software + (context + hardware)
often taken for granted

Understanding purpose is
important to meet quality
– fitness for purpose

How and where
the system will be
used?

Identify what is needed?
Identify all parties involved –
not just customer, user

Identify what is possible..

Purpose

• Software is designed for a purpose
– If it doesn’t work well then either:

• the designer didn’t understand the purpose well
• or the software is used for a purpose different from the intended one
• or the development team is incompetent

– The purpose is often complex:
• Many different kinds of people and activities
• Conflicting interests among them

– The purpose is found in human activities
• E.g. Purpose of a banking system comes from the business activities

of banks and the needs of their customers

• Identifying purpose is part of RE

Nikhil Hegde, IIT Dharwad 17

Inadequate understanding of the purpose leads to poor quality software

Quality

• Quality is determining software’s fitness for purpose

f(software, purpose)

Function of software and purpose

Nikhil Hegde, IIT Dharwad 18

Communicate

• Proactively communicate with customer to discover
their needs

• Communicate system description to stakeholders

– users, customers, developers, constituencies

– Formal:
• Shall statements, document templates, state transition diagrams,

detailed mathematical specification

– Informal:
• User stories, use cases

• Developing requirements document is part of RE

Nikhil Hegde, IIT Dharwad 19

Stakeholders

• Another team, a client, user, developer, all affected by
the software (constituencies) are stakeholders

• Identifying stakeholders is part of RE

• Identifying their needs is part of RE

Nikhil Hegde, IIT Dharwad 20

Software Intensive System

• A Software Intensive System consists of software +
hardware + context

– E.g. In a bank ATM service, the customer interacts with the
ATM machine through the software, which runs on the
hardware, and the context is the banking system.

• Often hardware and context are ignored

– leads to poor quality software

• Identifying context (when and how the software will be
used) is part of RE

Nikhil Hegde, IIT Dharwad 21

Constraints, Capabilities, and
Opportunities

• Different stakeholders might have conflicting needs

• Irrelevant needs identified may create inconsistencies

• Identify the constraints to know what is possible and
what expertise is needed – part of RE

Nikhil Hegde, IIT Dharwad 22

Requirements Engineering - Tasks

• Establishing the services that the customer requires
from the system and the constraints under which it
operates and is developed

1. Identify stakeholders and their needs

2. Identify purpose

3. Identify constraints and capabilities

4. Identify context

5. Develop a software specification

Nikhil Hegde, IIT Dharwad 23

Requirements

• Property of the system

• System analyst and the customer together generate it

• Should focus on what and not how

– What the system is supposed to do?

– How the system is supposed to do?

– May include what the system is not supposed to do

– Should include error handling (and/or recovery) methods

Nikhil Hegde, IIT Dharwad 24

Requirements - where do they come
from?

Nikhil Hegde, IIT Dharwad 25

specification

Computer

Program

Application domain Machine domain

Specification captures properties that are observable in both
domains

Domain properties

Requirements

Requirements - types

Nikhil Hegde, IIT Dharwad 26

• Two types: functional and non-functional

– Functional Requirements
• What the system must do w.r.t. a set of computations

• E.g. press a button to turn on the light

– Non-functional Requirements
• About quality, security, interoperability, cost, performance etc.

• How do we check if the software satisfies a non-functional
requirements?

Requirements - types

Nikhil Hegde, IIT Dharwad 27

• Another distinction: user and system

– User Requirements
• Written for customers in a non-technical language

– System Requirements
• Written for developers in a formal language. Developers must be able

to build a system based on these requirements

• Both user and system requirements must be defined

Properties of a Requirement

Nikhil Hegde, IIT Dharwad 28

• Should be simple

• Should be testable

• Should be organized

– Related requirements are grouped

– Priorities indicated (mandatory, nice-to-have, superfluous)

• Should be traceable

Traceability

• Is the link between requirements, their
sources, and the system design

• Source traceability
– Requirement -> stakeholders who proposed these

requirements

• Requirements traceability
– Requirement -> dependent requirement(s)

• Design traceability
– Requirement -> design

Nikhil Hegde, IIT Dharwad 29

Requirements Specification Document

Nikhil Hegde, IIT Dharwad 30

• End goal: complete and pertinent

• Serves dual purposes:

– Is the contract

– Can be used to bid for contract

