
Software Engineering

CS305, Autumn 2020

Week 15

Nikhil Hegde, IIT Dharwad 1

Class Progress… (last week)

Software Quality

What is quality? General and software-specific definition.

Metric for judging quality (COQ)

Why improve quality?

Approaches and Implementation guidelines for continuous
improvement of quality: TQM, ISO, and CMM

Project Management

Steps/activities in project management

Effort estimation and techniques – FP, COCOMO

Nikhil Hegde, IIT Dharwad 2

Class This Week..

• Agile Methodologies

• Revision

Nikhil Hegde, IIT Dharwad 3

Agile Development Methodology

• Another type of software development
methodology heavily based on testing.

• Also called Test Driven Development (TDD)
• Recall PA1 that briefly introduced you to TDD:

• Developed test specs based on SRS.

• Implemented test specs (test cases and test suites) –
Functional Testing (Black-Box testing)

• A group of software developers published the
manifesto for Agile Software Development in 2001.
• They had met to discuss lightweight software

development processes

Nikhil Hegde, IIT Dharwad 4

Why Lightweight Software
Development?

• Recall waterfall model:
• A phase in the process started only after the previous

phase ended. Phases: Requirements -> Design ->
Implementation -> Testing -> Maintenance

• Very old (70s, some concepts date back to 50s), Not
flexible w.r.t changing requirements and design

• Good at catching errors early, which is important
considering Boehm’s observation of the cost of change:

Cost grows exponentially with time

cost

time Requirements (1$)

Design ($100)
Implementation (1000$)
Testing and maintenance (10000$)

Analysis (10$)

Nikhil Hegde, IIT Dharwad 5

Why Lightweight Software
Development Method ? (Contd..)
• What if the cost remained flat?

• Possible because of improvements in
technology and tools:
• punch cards for inputs and batch processing in job

submission vs. faster compilation and execution
times

• assembly vs. high-level programming languages
• slow vs. fast hardware
• IDEs, Cloud, many more…

• Because of the shorter turnaround time,
you can let time answer questions and
resolve uncertainties inherent in software
development. What this means….

cost

time

Nikhil Hegde, IIT Dharwad 6

Agile Methodology

• Delay investing in resources / plans that might never be
used / realized. Ambiguity and volatility are inevitable

There is value in waiting

• Implement upfront
Focus on code rather than the design

Deliver working software quickly and adapt quickly

• Get feedback and iterate
Prioritize People over Processes (esp. customer)

• Focus on Simplicity (of design, implementation..)
Does not mean create inadequate software.
“Look for the simplest thing that works”

Nikhil Hegde, IIT Dharwad 7

Xtreme Programming (XP)

XP is a lightweight methodology for small to medium sized teams
developing software in the face of vague or rapidly changing
requirements -Kent Beck

• 4 Attributes: lightweight, humanistic, disciplined,
software development

• Guidelines and Principles:
1. Write tests (to get feedback)

2. Restructure code often (to simplify, to show courage)

3. Talk to fellow programmers and customers often
(communicate)

When you have to throw
away code that doesn’t

work/unnecessary

Nikhil Hegde, IIT Dharwad 8

XP in Practice

• Incremental planning

• Small releases

• Simple design

• Test first

• Refactoring

• Pair programming

• Continuous Integration

• On-site customer

Nikhil Hegde, IIT Dharwad 9

Incremental Planning

• Assumes that the requirements are recorded on story
cards, use cases, or scenarios.

• First, pick story (stories) for this release

User selects stories
for this release

Break the
stories into tasks

Plan the
release

Develop,
Integrate, and test

Release softwareEvaluate system
and iterate

Nikhil Hegde, IIT Dharwad 10

Small Releases

• Rather than focusing on a big release consisting of a lot
of stories, focus on small releases
• Helps deliver business value faster => builds customer

confidence

• Gives rapid feedback and hence, adapt quickly to changing
requirements

• Reduces risks and gives a sense of accomplishment to
developers

Nikhil Hegde, IIT Dharwad 11

Simple Design

• Simple enough to just meet the requirements
• No duplicated functionality

• Fewest possible classes and methods
• So adapting / changing is easier

Nikhil Hegde, IIT Dharwad 12

Test-First Development

• If there is a feature, write test case for the feature and
test before writing the feature itself
• Do this for unit tests as well

• You see that test fail initially (obviously). As you add more
functionality, tests start passing.

Nikhil Hegde, IIT Dharwad 13

Refactoring

• Recall software refactoring from topics in software
construction:
• Transforming code to make it easier to read, maintain, and

improve

• Refactoring is an important XP practice

• Done on-demand and not speculatively

Nikhil Hegde, IIT Dharwad 14

Pair Programming

• All production code is written by two people looking
at one machine (with one keyboard and one mouse)

• Study shows that productivity is equal to / better
than two independent developers working

• Programmers play dual roles: programmer and
strategizer (provider of out-of-context perspective)

Nikhil Hegde, IIT Dharwad 15

Continuous Integration

• Recall from Week13:
• Ongoing monitoring from

integration to testing to
deployment

Nikhil Hegde, IIT Dharwad 16

Programming Local Tests Integrate

System Tests /Acceptance tests

On Site Customer

• Customer is part of the team
• Brings the requirements

• Sits with the team

“If the system is not worth the time of one customer then it
may not be worth building”

Nikhil Hegde, IIT Dharwad 17

Requirements Engineering in XP

• Customer writes the requirements as story cards

Nikhil Hegde, IIT Dharwad 18
Source: Alex Orso, CS6300

Requirements Engineering in XP

• The story cards are broken down into tasks and
some tasks (story cards) are picked for next release

Nikhil Hegde, IIT Dharwad 19
Source: Alex Orso, CS6300

Scrum

• Extremely popular Agile methodology used in the
industry

• 3 Actors:
• Product Owner (is the Customer): responsible for listing

and prioritizing backlogs (aka stories in XP)

• Team: responsible for making software releases.

• Scrum master: responsible for facilitating (meetings),
removing obstacles.

Nikhil Hegde, IIT Dharwad 20

Scrum Process

Nikhil Hegde, IIT Dharwad 21

Step 1:

Scrum master schedules a Sprint planning meeting
involving product owner.

Decision on:
• Product backlogs that make it to Sprint backlog

• Breakdown of backlogs into tasks

Product backlog Sprint backlog

via. sprint planning meet

Scrum Process

Nikhil Hegde, IIT Dharwad 22

Step 2: Sprint
Sprint is an iteration in the process.
It is the main activity that ships the
release

Step 2.1: Daily scrums:
15-mins team sync meeting:

• Tasks completed since last
meeting

• TODO list for the next meeting

• Obstacles analysis

Sprint backlog 2-4 week sprint

Sprint backlog 2-4 week sprint

24-hour daily
scrum

Scrum Process

Nikhil Hegde, IIT Dharwad 23

Step 3: Sprint Review and Retrospection

• Typically 3-4 hr meeting.

• Product owner assesses the accomplishments.
Typically a demo is involved.

• If meets the acceptance criteria, can be deployed.

Sprint backlog 2-4 week sprint

24-hour daily
scrum

Product Release /
Deployed

Now some (more) interesting
stuff..

Nikhil Hegde, IIT Dharwad 24

Software Engineering for Machine
Learning

• What do the software engineering processes look
like while developing AI-based applications?

1. Recall ‘essential’ and ‘accidental’ challenges in “no
silver bullet” paper. What do the essential challenges
look like while developing large-scale AI applications?

2. What are three aspects of AI-based applications that
make them different from traditional application
domains?

Amershi et. al. provide answers to the above questions in
the paper: Software Engineering for Machine Learning:
A Case Study, appeared in ACM/IEEE ICSE-SEIP 2019.

Nikhil Hegde, IIT Dharwad 25

AI-Apps vs. Traditional Apps

• What do the essential challenges look like while
developing large-scale AI applications?

Nikhil Hegde, IIT Dharwad 26

AI-Apps vs. Traditional Apps

• What are three aspects of AI-based applications
that make them different from traditional
application domains?

• Data centric: AI-based applications are all about data

• Customizability and extendibility requires both SE and
deep knowledge of ML skills

• High coupling among modules

Nikhil Hegde, IIT Dharwad 27

Data Centric

• Traditional software apps (primarily) is about shipping
code. For AI-based apps, data powers the models.

• Data is context-centric, voluminous, heterogeneous,
and difficult to describe

• How can version controlling be done for data?

• Software APIs have specifications. Data rarely has metadata
info associated (schemas, statistical distributions etc.)

• Data changes rapidly (arrives ‘live’ sometimes)

Nikhil Hegde, IIT Dharwad 28

Customizability and Extendibility

• Traditional Apps: customizing and reusing code
components is made simple through elegant, modular,
and simple design. Is well understood.

• AI-apps: have model (SVM, neural nets), parameters
that control the model (support vectors, weights) and
that are learned during training, and specific versions
of data sets used for training

• What if you want to use a model in a different domain and
different data formats?

Nikhil Hegde, IIT Dharwad 29

Modularity

• Traditional apps: modules are separated and isolated so
that development and maintaining is easy. APIs control the
interaction among modules. APIs serve two purposes: keep
interaction minimum, help maintain the separation

• AI-apps:

• models are not extensible. E.g. you have a model identifying
different kind of pizzas (from images). You also have a model for
ordering pizzas (based on transcripts). Can’t combine them.

• Component entanglement – changes to one model in a part of
the system affects other models in non-obvious ways

Nikhil Hegde, IIT Dharwad 30

Best Practices

Nikhil Hegde, IIT Dharwad 31

• 9-stage Software Development Methodology

Model requirements Data collection Data cleaning

Data labellingFeature engineeringModel training

Model monitoringModel deploymentModel evaluation

any of
these
stages

any of
these
stages

Best Practices and Challenges

• End-to-end pipeline support for automation

• Data pipelines for curating data

• IDEs for development

• Data availability, collection, cleaning, and management

• Blending data management tools with ML frameworks to
avoid fragmenting data and model management activites

• Education and training

• Engineers with tradition SE background need ML skills to
work alongside ML specialists.

Nikhil Hegde, IIT Dharwad 32

Best Practices and Challenges

• Model debugging and interpretability

• When and how models fail to make accurate predictions?

• Develop more interpretable models and visualization
techniques

• Model evolution, evaluation, and deployment

• Employ rigorous and agile techniques to face the rapid
changes that ML models go through

• Compliance

• Fairness, accountability, transparency, and ethics

Nikhil Hegde, IIT Dharwad 33

Best Practices and Challenges

• Varied perceptions

• What is a challenge depends on the amount of experience
one has in building / integrating AI-capabilities

Nikhil Hegde, IIT Dharwad 34

TQM for Orgs. Building AI-apps

• Process Maturity Model for assessing large-scale AI-
based app development capabilities

• Hybrid of CMM and Six Sigma

• S1: My team has goals defined for what to accomplish with this
activity.

• S2: My team does this activity in a consistent manner.
• S3: My team has largely documented the practices related to this

activity.
• S4: My team does this activity mostly in an automated way.
• S5: My team measures and tracks how effective we are at

completing this activity.
• S6: My team continuously improves our practices related to this

activity.

Nikhil Hegde, IIT Dharwad 35

Concluding Remarks

• How has the recent trend in integrating AI
capabilities in traditional large-scale apps affected
job roles?
• Traditionally: Program Manager, Team-development,

Team-test
• Adoption of DevOps (building and maintaining

applications (and enabling platforms) supporting cloud
computing means
• Tester / developer role distinction is now seamless
• IT, operations, and diagnostics are all integrated
• New role of a data scientist has emerged. Poly-math role – also

have to know and develop the model, bug-fix, support on
cloud.

Nikhil Hegde, IIT Dharwad 36

Concluding Remarks

• Software Engineering is here to stay. Encompasses
a wide variety of skills – frontend, backend, security
skills, network admin skills etc.

• The skills developed for software engineering helps
you build stuff. Help solve real-word problems

• Machine learning complements existing product
rather than being the product itself

Nikhil Hegde, IIT Dharwad 37

