
Software Engineering

CS305, Autumn 2020

Week 13

Nikhil Hegde, IIT Dharwad 1

Class Progress…

• When we met last..

Software Construction
– Coding - Manual and Automatic Approaches, Paradigms,

Reviews

– Refactoring – “Make it easy to read, maintain, and
improve”, types, demo, dos and don’ts.

– Software Verification – “checking for bugs”

• Testing is the most popular method. Inspection, Static
analysis, and formal proofs are other methods.

• IEEE terminology of Failure, Fault, Error.

• JUnit and Demo in Eclipse.

Nikhil Hegde, IIT Dharwad 2

White-Box Testing (contd..) with
another example

• White-Box Testing is code based. Hence,
– Can reveal errors in coding as opposed to Black-Box

testing, which deals with observable anomalies (failure).

– Can be objective as opposed to subjective (in Black-Box
testing). There are metrics to measure the effectiveness of
White-Box testing.
• Can compare test suites

– Can be done automatically. There are tools.

• E.g.
– Code-Coverage based analysis

Nikhil Hegde, IIT Dharwad 3

Code Coverage Based Testing

• Code-coverage based analysis is a control-flow based
approach (white-box testing can be control-flow based,
data-flow based, and fault based)

– What is control-flow? control-flow graphs (CFGs)
to reason about code and structure. E.g.

Nikhil Hegde, IIT Dharwad 4

1. void PrintSum(int a, int b) {
2. int result = a + b;
3. if(result > 0)
4. cout<<“RED: ”<<result;
5. else if (result < 0)
6. cout<<“BLUE:”<<result;
7. }

1

2

3

45

6

7

TF

F

T

Coverage Criteria

• Criteria are defined in terms of interesting parts of code that
need to be exercised - test requirements e.g. REQ1, REQ2

• When you apply a coverage criteria, you get a set of test
specifications, test cases.

• E.g. statement coverage, branch coverage.

Nikhil Hegde, IIT Dharwad 5

1. void PrintSum(int a, int b) {
2. int result = a + b;
3. if(result > 0)
4. cout<<“RED: ”<<result;
5. else if (result < 0)
6. cout<<“BLUE:”<<result;
7. }

Assumption: a faulty statement must be executed to uncover a fault

REQ1

REQ2

Test Specifications (for REQ1 and REQ2)

• REQ1 = “Execute Statement 4”

– Expressed as constraints on inputs = “a+b > 0”

• REQ2 = “Execute Statement 5”

– Expressed as constraints on inputs = “a+b < 0”

Nikhil Hegde, IIT Dharwad 6

1. void PrintSum(int a, int b) {
2. int result = a + b;
3. if(result > 0)
4. cout<<“RED: ”<<result;
5. else if (result < 0)
6. cout<<“BLUE:”<<result;
7. }

REQ1

REQ2

Test Spec 1

Test Spec 2

Implementation of Test Specifications
(for Test Spec 1 and Test Spec 2)

• “a+b > 0”

• “a+b < 0”

Nikhil Hegde, IIT Dharwad 7

1. void PrintSum(int a, int b) {
2. int result = a + b;
3. if(result > 0)
4. cout<<“RED: ”<<result;
5. else if (result < 0)
6. cout<<“BLUE:”<<result;
7. }

Test Spec 1

Test Spec 2

Input: (a=10, b=10), Expected Output: “RED: 20”

Input: (a=-10, b=-10), Expected Output: “BLUE: -20”

Statement Coverage

• Test Requirement – every statement in the program

• Coverage metric - number of statements executed

Total number of statements

(higher the ratio better is the coverage)

• Most used in the industry

Nikhil Hegde, IIT Dharwad 8

Statement coverage is satisfied when “all” the statements
have been exercised/executed

Can satisfy to different degrees.

Coverage for Test Case 1

• Test Case 1:

• Coverage: ~71%

Nikhil Hegde, IIT Dharwad 9

1. void PrintSum(int a, int b) {
2. int result = a + b;
3. if(result > 0)
4. cout<<“RED: ”<<result;
5. else if (result < 0)
6. cout<<“BLUE:”<<result;
7. }

Test Spec 1 is implemented by..

Input: (a=10, b=10), Expected Output: “RED: 20”

Coverage for Test Case 2

• Test Case 2:

• Coverage: ~86%

• Test Case 1 + Test Case 2 = 100% Coverage

Nikhil Hegde, IIT Dharwad 10

1. void PrintSum(int a, int b) {
2. int result = a + b;
3. if(result > 0)
4. cout<<“RED: ”<<result;
5. else if (result < 0)
6. cout<<“BLUE:”<<result;
7. }

Test Spec 2 is implemented by..

Input: (a=-10, b=-10),
Expected Output: “BLUE: -20”

Often the expected statement coverage is set to < 100%. Why?

Branch Coverage

• Another type of coverage criteria

• Test Requirement – every branch in the program

• Coverage metric - number of branches executed

Total number of branches

(higher the ratio better is the coverage)

• A branch = outgoing edges from a decision point in a
CFG

Nikhil Hegde, IIT Dharwad 11

Branch Coverage - Example

• 4 outgoing edges. So, 4 branches.

Nikhil Hegde, IIT Dharwad 12

1. void PrintSum(int a, int b) {
2. int result = a + b;
3. if(result > 0)
4. cout<<“RED: ”<<result;
5. else if (result < 0)
6. cout<<“BLUE:”<<result;
7. }

1

2

3

45

6

7

TF

F
T

Branch Coverage - Example

• 4 outgoing edges. So, 4 branches.

• Test case 1:

– Coverage = 25%

Nikhil Hegde, IIT Dharwad 13

1. void PrintSum(int a, int b) {
2. int result = a + b;
3. if(result > 0)
4. cout<<“RED: ”<<result;
5. else if (result < 0)
6. cout<<“BLUE:”<<result;
7. }

1

2

3

45

6

7

TF

Input: (a=10, b=10), Expected Output: “RED: 20”

F
T

Branch Coverage - Example

• Test case 2:
– Coverage = 50%

• Test case 1 + Test case 2 = 75% coverage (not correct to
sum the coverage of individual tests i.e. coverage(Test1) + coverage(Test2)
!= coverage(Test1+Test2))

Nikhil Hegde, IIT Dharwad 14

1. void PrintSum(int a, int b) {
2. int result = a + b;
3. if(result > 0)
4. cout<<“RED: ”<<result;
5. else if (result < 0)
6. cout<<“BLUE:”<<result;
7. }

1

2

3

45

6

7

TF

Input: (a=-10, b=-10), Expected Output: “BLUE: -20”

F
T

Branch Coverage - Example

• Test case 3:

• Test case 1 + Test case 2 + Test case 3= 100%
coverage

Nikhil Hegde, IIT Dharwad 15

1. void PrintSum(int a, int b) {
2. int result = a + b;
3. if(result > 0)
4. cout<<“RED: ”<<result;
5. else if (result < 0)
6. cout<<“BLUE:”<<result;
7. }

1

2

3

45

6

7

TF

Input: (a=0, b=0), Expected Output:

T
F

Criteria Subsumption

• We tested more thoroughly when moved from
statement coverage criteria to branch coverage criteria

– E.g. we could a test case (a=0,b=0) to go over the F edge of
node 5.

• All test cases satisfying a particular criteria also satisfy
another criteria. One criteria subsumes another.

– E.g. all test cases (1-3) yielding 100% branch coverage
also yield 100% statement coverage

• Branch coverage is a stronger criteria than statement
coverage

Nikhil Hegde, IIT Dharwad 16

Branch Coverage - Example

• Test case 1:

• Test case 2:

• Test case 1 + Test case 2 = 100% branch coverage.

Nikhil Hegde, IIT Dharwad 17

1. void Foo(int x, int y) {
2. if((x==0) || (y>0))
3. y = y/x; cout<<y;
4. else
5. x = y + 2; cout<<x;
6. }

1

2

34

6

TF

Input: (x=-10, y=-10), Expected Output: -8

5

Input: (x=10, y=10), Expected Output: 1

Is 100% branch coverage sufficient to uncover faults?

Branch Coverage - Example

• Test case 3:

• Instead of considering the whole statement at the
decision point (whole predicate), we can consider
each of the conditions separately.

Nikhil Hegde, IIT Dharwad 18

1. void Foo(int x, int y) {
2. if((x==0) || (y>0))
3. y = y/x; cout<<y;
4. else
5. x = y + 2; cout<<x;
6. }

1

2

34

6

TF

Input: (x=0, y=10), Expected Output: divide-
by-zero error

5

Condition Coverage - Example

• Test case 1:

Nikhil Hegde, IIT Dharwad 19

1. void Foo(int x, int y) {
2. if((x==0) || (y>0))
3. y = y/x; cout<<y;
4. else
5. x = y + 2; cout<<x;
6. }

1

2

34

6

TF

Input: (x=0, y=-10), Expected Output: divide-
by-zero error

5

Condition Coverage - Example

• Test case 2:

• Test case 1 + Test case 2 = 100% condition coverage

Nikhil Hegde, IIT Dharwad 20

1. void Foo(int x, int y) {
2. if((x==0) || (y>0))
3. y = y/x; cout<<y;
4. else
5. x = y + 2; cout<<x;
6. }

1

2

34

6

TF

Input: (x=-10, y=10), Expected Output:-1

5

Does 100% condition coverage mean 100% branch coverage? i.e.
Does Condition Coverage subsume Branch Coverage?

Other Coverage Criteria

• Path coverage

• Data-flow coverage

• Mutation coverage

Nikhil Hegde, IIT Dharwad 21

Theoretical. Practically not possible in
most cases.

Concluding Remarks

• Any criteria and satisfiability metric is only an
approximation for testing

– Only exhaustive testing can reveal faults

– E.g. path coverage of 100% in the below code still not able
to uncover the fault

• Watch out for unreachable/dead code

Nikhil Hegde, IIT Dharwad 22

1. void Foo() {
2. int i;
3. read(i);
4. print(10/(i-3));
5. }

Code-Coverage Tools Demo

• gcov

• Coverage in Eclipse

Nikhil Hegde, IIT Dharwad 23

Further reading

• https://gcc.gnu.org/onlinedocs/gcc/Gcov-
Intro.html#Gcov-Intro

• https://www.eclemma.org/userdoc/index.html

Nikhil Hegde, IIT Dharwad 24

https://gcc.gnu.org/onlinedocs/gcc/Gcov-Intro.html#Gcov-Intro
https://www.eclemma.org/userdoc/index.html

Modern Best Practices – CI / CD

• Continuous Integration (CI) / Continuous Deployment
(CD) offer automation and ongoing monitoring of apps
from integration to testing to deployment. (commonly
referred to as CI workflows)

• Every commit to the repository should be production
ready – ideally.

• But how?
– Commit changes to local branch, Merge local and main branches

– Have a separate branch for production code

– Merge changes in master branch into production branch

– Build and run tests (on production server) automatically

Nikhil Hegde, IIT Dharwad 25

Continuous Integration

• Goal: developers’ code changes are built, tested, and
merged to shared repository.

• In large projects, there are too many branches and code
changes happening simultaneously.

• If you wait for the release day to merge code changes
and then test, the while merging you might see code
conflicts (from multiple developers’ changes to different
branches). Here, merging is done manually / semi-
automatic and is tedious, error-prone, time-intensive.

• Continuous delivery is another term that means that the
released code is merged and bug tested automatically.

Nikhil Hegde, IIT Dharwad 26

Continuous Integration

Source: pepgotesting.com

Nikhil Hegde, IIT Dharwad 27

Continuous Deployment

• Goal: automatically release developers’ changes from
repository to production for customers to use.

• One step further from CI

• Previous step(s) of CI (and continuous delivery) ensure(s) that
the code in the repository is already bug tested. So,
why not pass on the benefit to customers?

Nikhil Hegde, IIT Dharwad 28

CI vs. CD

Source: https://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs-delivery-vs-deployment

Manual Tests

Manual Tests

QA team does
these tests
manually

Nikhil Hegde, IIT Dharwad 29

Tool for CI/CD: GitHub Actions

• Offers:

– Automated Testing (CI)

– Continuous delivery / continuous deployment

– Defect management and response to defects

– Triggering code reviews

– Managing branches

– ….

Nikhil Hegde, IIT Dharwad 30

Summary

Nikhil Hegde, IIT Dharwad 31

Further Reading

• https://www.atlassian.com/continuous-
delivery/principles/continuous-integration-vs-
delivery-vs-deployment

• https://developers.redhat.com/blog/2017/09/
06/continuous-integration-a-typical-process/

• https://docs.github.com/en/free-pro-
team@latest/actions

Nikhil Hegde, IIT Dharwad 32

https://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs-delivery-vs-deployment
https://developers.redhat.com/blog/2017/09/06/continuous-integration-a-typical-process/
https://docs.github.com/en/free-pro-team@latest/actions

