
Software Engineering

CS305, Autumn 2020

Week 10

Nikhil Hegde, IIT Dharwad 1

Class Progress…

• Last Week

– RUP phases,

– Software Construction
• Inspections/Reviews

• This week

– Software Construction
• Coding

• Refactoring

• Introduction to testing and unit testing (if time permits)

Nikhil Hegde, IIT Dharwad 2

Coding

Nikhil Hegde, IIT Dharwad 3

Coding

• Could involve:

– Writing source code / programming in a chosen language

– Automatic generation of source code using a design
representation of the component to be constructed

– Automatic generation of executable code using a fourth-
generation language – program generating language

Nikhil Hegde, IIT Dharwad 4

Human understanding is facilitated by linear sequence of logical statements

Programming Paradigms

• Unstructured Programming
– Writing a sequence of commands or statements that access ‘Global’ data.

E.g. Assembly lang. programming.

• Structured Programming (sometimes used interchangeably with

procedural programming)

– Dijkstra’s advice on using simple logical constructs of:

– Focus on writing ‘modular’ programs. Have single-entry and single-exit for a
procedure / function (control construct). E.g. C, Assembly lang. programming

Nikhil Hegde, IIT Dharwad 5

sequence condition repetition

Programming Paradigms

• Object Oriented Programming
– Modeling real-world objects. Data is the centerpiece. Combine data and

functions, allow code reuse, incremental dev. maintainability, modularity.
(more in Week3 lectures). E.g. C++, Java

• Functional Programming
– Focus on what to do and not how to do. Don’t create state that is

changeable. E.g. Lisp, Racket

• Concurrent Programming
– Focus on concurrent execution of a sequence of statements.

– Parallel programming is a type.

– E.g. Threads programming (Java threads), Open MP, MPI, CUDA-C.

Nikhil Hegde, IIT Dharwad 6

Coding Principles

• Ensure that the problem is well-understood before coding (i.e.

design is clear, programming language is clear)

• Follow Dijkstra’s advice and create modular code that is highly
cohesive and loosely coupled

• Select data structures that meet the design objectives

• Create readable code (have indentation, blank lines, and comments)

• Select meaningful names for variables, functions, and follow
coding standards and best practices
– tmp, temp, data are “symptoms of programmer laziness”.

– (for GCC) https://gcc.gnu.org/wiki/CppConventions

• Get code reviewed by peers

Nikhil Hegde, IIT Dharwad 7

8

Code Review – class exercise

Nikhil Hegde, IIT Dharwad

• Review the following Fortran code

9

Code Review – class exercise

Nikhil Hegde, IIT Dharwad

• Review the following Fortran code
• C is comment to end of line

• The CONTINUE statement is often used as a
place to hang a statement label, usually it is the
end of a DO loop. If the CONTINUE statement is
used as the terminal statement of a DO loop, the
next statement executed depends on the DO loop
exit condition.

• .LT. is less than

• ** is exponentiation (has higher priority than *)

• DO label var = expr1, expr2, expr3

statements

Label CONTINUE

var is the loop variable (often called the loop index)
which must be integer. expr1 specifies the initial
value of var, expr2 is the terminating bound,
and expr3 is the increment (step).

Code Inspection Checklist (excerpt)
1. Data (DA)

• Is each variable correctly typed?

• Is each variable initialized before use?

• Is the initialization appropriate for the type?

• Can global variables be made local?

• Are buffer overflows checked?

• Is dynamically allocated memory freed?

2. Interface (IF)

• Are appropriate values returned from
functions?

• Do function calls have correct parameter
types/values?

• Are return values tested?

3. Functionality (FN)

• Do loops terminate?

• Do all loops iterate the correct number of
times (no off-by-one errors)?

• Is behavior correct if a loop is never entered?

• Is there dead (unreachable) code?

• Do all switch statements have a default case?

• Do all switch arms have break statements? If
not, is the ``fall through'' correct?

4. Input/Output (IO)

• Are files opened before use?

• Are files closed after use?

• Are error conditions checked?

5. Other (OT)

• Any defect discovered that does not fall into
one of the above categories.

Slide courtesy: Alex Orso, CS3300

Further Reading

• Code Reviews:

http://web.mit.edu/6.005/www/fa16/classes/04-
code-review/

Misc: “The Mess We’re In” – Joe Armstrong

https://youtu.be/lKXe3HUG2l4

Pay special attention to the slide on “7 deadly sins” at around 8:00

Nikhil Hegde, IIT Dharwad 12

http://web.mit.edu/6.005/www/fa16/classes/04-code-review/
https://youtu.be/lKXe3HUG2l4

Software Refactoring

Nikhil Hegde, IIT Dharwad 13

Refactoring

• Objective: transform code to make it easier to read,
maintain, and improve the design

Nikhil Hegde, IIT Dharwad 14

program refactored program

You would have probably done it without actually referring to it by the name

program behavior doesn’t change after refactoring –
“behavior preserving”

Refactoring

• How can we “guarantee” that the transformed program is
behavior preserving?

– No guarantees. Simply test it.
• Testing is inherently incomplete.

Nikhil Hegde, IIT Dharwad 15

Test casesInput domain

Why Refactoring?

• To accommodate design changes

– Requirements Change

• To improve design

– Add new feature

– Make code more maintainable etc.

– To adapt (may not have the best design in the first attempt)

• To improve “cut-paste” code

Nikhil Hegde, IIT Dharwad 16

Refactoring History

• Well suited to OO languages but not limited to those
languages only

– Because of the ability of OO languages to create flexible
code/design

– William F. Opdyke’s 1990 PhD thesis on refactoring for Smalltalk

• Increasingly popular (because making changes is less costly) in Agile
Environments

• Martin Fowler’s Book - “Refactoring – Improving the Design of

Existing Code”

Nikhil Hegde, IIT Dharwad 17

Refactoring Types

• Many types listed in Fowler’s book

• E.g.

– Extract Method

– Collapse Hierarchy

– Decompose Conditionals

– Consolidate Conditionals

– Extract Class

– Inline Class

Nikhil Hegde, IIT Dharwad 18

Refactoring Type – Collapse Hierarchy

Applied when:

– Class hierarchy (superclass and subclass chain) may grow over time

– Methods and attributes may move from one class to another

Consequence: superclass and subclass may become too
similar

Fix: Merge superclass and subclass into one

Nikhil Hegde, IIT Dharwad 19

Refactoring Type – Consolidate
Conditionals

• Applied when: a set of conditional expressions with
different conditional check and same result

Fix: Combine conditionals to have single check and single
result (combine and extract)

Nikhil Hegde, IIT Dharwad 20

double disabilityAmount() {
if(seniority < 2)

return 0
if (monthsDisabled > 12)

return 0
if (isParttime)

return 0;
// compute disability amount
}

double disabilityAmount() {
if(notEligibleForDisability())

return 0
// compute disability amount
}

bool notEligibleForDisability() {
return (seniority < 2) ||

(monthsDisabled > 12) ||
isParttime ;

}

Refactoring Type – Decompose
Conditionals

• Applied when: a complex conditional check obscures
what happens and why it happens

Fix: Extract methods from conditionals, modify if-else body

Nikhil Hegde, IIT Dharwad 21

if(date.before (SUMMER_START) || date.after(SUMMER_END))
charge = quantity * winterRate + winterServiceCharge;

else
charge = quantity * summerRate;

if(notSummer(date))
charge = winterCharge(quantity);

else
charge = summerCharge(quantity);

Refactoring Type – Extract Method

• Large method with cohesive code snippet

• Fix: create a method extracting the code snippet

Nikhil Hegde, IIT Dharwad 22

Demo in Eclipse IDE

More refactoring types..

• Extract Class

– When a class is doing the work of two classes, create new class
and move relevant methods and attributes.

• Inline Class

– When a class is not doing much, move its features into another
class and delete this class.

Nikhil Hegde, IIT Dharwad 23

Refactoring when not to do?

• Refactoring is powerful but may introduce regression
errors

• So, do not do it when:

– Code is broken

– Deadlines are close

– When there is no need

– When there is no budget (manpower, money) for manual
change, test development, and maintenance

Nikhil Hegde, IIT Dharwad 24

When to do refactoring?

• Bad smells – symptoms of unhygienic code

– Duplicated code

– Long method

– Large class

– Long parameter list

– Shotgun surgery

– Feature envy

– . . .

Nikhil Hegde, IIT Dharwad 25

When to do refactoring?

• Bad smells – symptoms of unhygienic code

– Duplicated code: extract method

– Long method: extract method, decompose conditionals

– Large class: extract class (or subclass)

– Long parameter list: ?

– Shotgun surgery: move method/field, inline class

– Feature envy: extract method, move method

– . . .

Nikhil Hegde, IIT Dharwad 26

Software Verification

• Checking the software for bugs

• Approaches:
– Testing

• Most commonly used method in the industry. Refer slides 25-36 from
Week4 for testing overview.

– Inspection
• Human intensive method (refer to Week9 slides)

– Static Verification
• E.g. check for null pointer dereferences

• Considers all possible inputs unlike testing

– Formal proofs of correctness
• Based on formal specifications provided, proves that a program is

implemented correctly.
Nikhil Hegde, IIT Dharwad 27

Detour: IEEE Terminology

• Failure: observable incorrect behavior of the system

• Fault / Bug: related to code. Presence of a fault doesn’t
mean failure - necessary but not sufficient condition for
failure.

• Error: Cause of a fault (usually a human error)

Nikhil Hegde, IIT Dharwad 28

Unit Testing

• Recall testing granularity from
week4

• Focus: Unit Testing -

• Recall white-box testing. Unit
testing is an example of white-
box testing. Other examples:

– Integration testing

– Static code analysis (for detecting errors)

• Using code patterns and machine
learning

Nikhil Hegde, IIT Dharwad 29

Testing of individual modules in isolation

JUnit (http://junit.org)

• Open-source framework to write and run tests for
Java programs

• You can write Unit tests

– E.g. test individual methods of a class

• Erich Gamma and Kent Beck wrote it initially

Nikhil Hegde, IIT Dharwad 30

JUnit – how to use?

• Provides annotations
– E.g. annotations:

• @Test – identifies a test method

• @Before – identifies a method that is executed
before a test is run

• @After – identifies a method that is executed
after a test is run

• Provides assertions for verifying methods
– E.g. assertEquals(3,MyClass.GetMinWordLen());

• Provides Test runners for running the tests

• Provides features for automated running of tests and
progress indicators

Nikhil Hegde, IIT Dharwad 31

behaving as expected / did we get it right?

JUnit Demo

Nikhil Hegde, IIT Dharwad 32

Demo in Eclipse IDE

