
Software Engineering

CS305, Autumn 2020

Nikhil Hegde, IIT Dharwad 1

Software Engineering

Software + Engineering

What is Software?

– An abstraction that:
• Defines a set of computations

• Becomes concrete/useful only in the presence of hardware and
context (e.g. human activity)

What is Engineering?

– Traditionally: “use of scientific principles to design and
build machines, structures, and other items” - Wikipedia /
Oxford dictionary

Nikhil Hegde, IIT Dharwad 2

Why Software Engineering?

• Why is it so difficult to build software?

• Why is it so difficult to build good software?

Software engineering is a fundamental discipline

Nikhil Hegde, IIT Dharwad 3

Software Engineering

• Systematic study of:

– Methodology

– Techniques

– Tools

to build high quality software that is correct and is
built in a given time and price budget

Nikhil Hegde, IIT Dharwad 4

Lines of Code in Software

Lines of code: 101 102 103 104 105 106………………...

Individual effort Software Engineering

Nikhil Hegde, IIT Dharwad 5

Picture of a Crisis

9 Software Projects worth $7M
Delivered but not used

Not delivered

Used after extensive
modification

Used after changes

Used as delivered

Davis A. M. (1990) Software Requirements Analysis & Specification. Prentice-Hall, NJ.

• $5M / $7M projects either not delivered or never used!

Nikhil Hegde, IIT Dharwad 6

Software Processes

• Transforming an idea to software is a complex
task

• Processes help manage the complexity

– Break the task into several steps/phases that are:

• Systematic

• Formal

Nikhil Hegde, IIT Dharwad 7

Software Processes

• Transforming an idea to software is a complex
task

• Processes help manage the complexity

– Break the task into several steps/phases that are:

• Systematic

• Formal

– E.g. 1) Waterfall model, 2) Evolutionary prototype

3) Unified Software Process, 4) Agile methodology

Nikhil Hegde, IIT Dharwad 8

Exercise

• How many lines of code (LOC) does an average
software developer produce per day?

LOC/day:
o < 25

o 25-50

o 50-100

o 100-1000

o > 1000

ohttps://forms.gle/uyCqG6rMrnGavmhz8

Nikhil Hegde, IIT Dharwad 9

Software Phases

• Processes are characterized by phases – steps
in systematic software development

• Software Phases:

1. Requirements / System Engineering

2. Design

3. Implementation

4. Verification and Validation

5. Maintenance

Nikhil Hegde, IIT Dharwad 10

Last Class…

• What is Software Engineering ?

• What lead to Software Engineering as a discipline?

– Software boom, Complexity, Failures

• Why is it so difficult to build good software?

– Correctness, Price and Time constraints

• What are different phases or activities of software
development?

– Ordering of activities

– Duration of activities

Nikhil Hegde, IIT Dharwad 11

Processes

Turning Ideas into Software

Nikhil Hegde, IIT Dharwad 12

Source: Alex Orso (CS 3300)

is complicated!

Today’s Class…

• Managing Software Complexity Through Software
Development Life Cycle (SDLC) Models / Processes

– Waterfall Model

– Spiral Model

– Evolutionary Prototyping

– Rational Unified Process

– Agile Methodology

• Software Complexity and Programmer Productivity

Nikhil Hegde, IIT Dharwad 13

SDLC Activities / Steps – Requirements
Engineering

• Establish stakeholders’ needs that are to be satisfied
by the software

• Why Important?

– Cost of correcting errors

• Grows exponentially as we move to maintenance phase

• How to get it right?

– Elicit, Analyze, Specify, Validate, Manage - Iterate

Nikhil Hegde, IIT Dharwad 14

SDLC Activities / Steps – Design

• Translate Requirements to internal structure

– Architecture, Interface, Component, Data structure,
algorithm

Nikhil Hegde, IIT Dharwad 15

SDLC Activities / Steps – Coding

• Translate design into software

• How to get it right? Keep a tab on..

– Complexity

– Diversity

– Validation

– Standards

Nikhil Hegde, IIT Dharwad 16

SDLC Activities / Steps – Verification
and Validation

• Have we built the right system? - validation

• Have we built the system right? – verification

• Done at:

– Unit, Integration, System levels

Nikhil Hegde, IIT Dharwad 17

SDLC Activities / Steps – Maintenance

• Deals with handling issues / requests seen after the
software is delivered

• Corrective – Bug fixes

• Perfective – enhancements

• Adaptive – environment changes

Nikhil Hegde, IIT Dharwad 18

Waterfall Model

• Go from one phase to another like a cascading
waterfall

Software Concept Requirements Analysis
Architectural Design Detailed Design Coding and
Debugging System Testing

– Very old
– Pros: Finds errors easily

– Cons: Not flexible

Nikhil Hegde, IIT Dharwad 19

Spiral Model

• Incremental Risk-Oriented Model

– Determine Objectives

– Identify and Resolve Risks

– Develop and Test Software

– Plan Next Iteration

Iterate…
– Cons: Complex, Dependent on Risk Analysis, Requires Specific

Expertise

– Pros: Risk Reduction, Easy to Enhance, Software Produced Early

Nikhil Hegde, IIT Dharwad 20

Evolutionary Prototyping

• Evolve an initial prototype based on customer
feedback

– Start with an initial Prototype

– Design and Implement the Prototype

– Refine Until Acceptable

– Complete and Release

– Pros: Immediate Feedback, Helps Requirements Understanding

– Cons: Difficult to Plan, Can Deteriorate to Code-and-fix

Nikhil Hegde, IIT Dharwad 21

Rational Unified Process

• Use Unified Modeling Language (UML) to formally
capture the order and duration of different activities
– Inception, Elaboration, Construction, Transition

Nikhil Hegde, IIT Dharwad 22

Agile

• Be more flexible (trading off discipline) in
accommodating changes in requirements

– Fail, Pass, Refactor

Nikhil Hegde, IIT Dharwad 23

Choosing A Model

• Requirements Understanding

• Expected Lifetime

• Risk

• Schedule Constraints

• Interaction with Customers

• Expertise

Nikhil Hegde, IIT Dharwad 24

Tools for Software Engineering

• Software Complexity vs. Developer Productivity

• Productivity:
– Development : punch cards vs. IDE (Eclipse, Microsoft Visual Studio)

– Language: machine code vs. high-level language (e.g. C++, SQL)

– Debugging: print statements vs. debuggers (e.g. GDB)

– Others: Version control (e.g. Git), Code coverage and verification (e.g.
Coverity, GCov)

Software Size and Complexity

Developer Productivity

Nikhil Hegde, IIT Dharwad 25

Desired Developer Productivity

