Software Engineering

CS305, Autumn 2020

Nikhil Hegde, IIT Dharwad

Software Engineering

Software + Engineering

What is Software?
— An abstraction that:

* Defines a set of computations

* Becomes concrete/useful only in the presence of hardware and
context (e.g. human activity)

What is Engineering?

— Traditionally: “use of scientific principles to design and
build machines, structures, and other items” - Wikipedia /
Oxford dictionary

Why Software Engineering?

 Why is it so difficult to build software?

* Why is it so difficult to build good software?

Software engineering is a fundamental discipline

Software Engineering

e Systematic study of:
— Methodology
— Techniques
— Tools

to build high quality software that is correct and is
built in a given time and price budget

Lines of Code in Software

Individual effort Software Engineering

Lines of code: 101 102 103 104 10° 1006,

Nikhil Hegde, IIT Dharwad 5

Picture of a Crisis

9 Software Projects worth S7M

M Delivered but not used

M Not delivered

W Used after extensive
modification

m Used after changes

M Used as delivered

 S5M /S7M projects either not delivered or never used!

Davis A:M:-(1999).50ftware Requirements Analysis & Specification. Prentice-Hall, NJ.

Software Processes

* Transforming an idea to software is a complex
task

* Processes help manage the complexity

— Break the task into several steps/phases that are:
* Systematic
* Formal

Software Processes

* Transforming an idea to software is a complex
task

* Processes help manage the complexity

— Break the task into several steps/phases that are:
e Systematic
* Formal

— E.g. 1) Waterfall model, 2) Evolutionary prototype
3) Unified Software Process, 4) Agile methodology

Exercise

* How many lines of code (LOC) does an average
software developer produce per day?

LOC/day:

<25
25-50
50-100
100-1000
> 1000

O
e
O
O
O
o https://forms.gle/uyCqgG6rMrnGavmhz8

Software Phases

* Processes are characterized by phases — steps
in systematic software development

e Software Phases:

Requirements / System Engineering
Design

Implementation

Verification and Validation

A A

Maintenance

Last Class...

What is Software Engineering ?

What lead to Software Engineering as a discipline?
— Software boom, Complexity, Failures

Why is it so difficult to build good software?

— Correctness, Price and Time constraints

What are different phases or activities of software
development?

— Ordering of activities
. o Processes
— Duration of activities

Turning ldeas into Software

4
‘-

.

.,
\\ l\\li\-

/4

How the customer explained it How the Project Leader How the Analyst designed it How the Programmer wrote it How the Business Consultant
understood it described it

How the project was What operations installed
documented

How the customer was billed How it was supported What the customer really
needed

Source: Alex Orso (CS 3300)
Nikhil Hegde, IIT Dharwad 12

Today’s Class...

 Managing Software Complexity Through Software
Development Life Cycle (SDLC) Models / Processes
— Waterfall Model
— Spiral Model
— Evolutionary Prototyping
— Rational Unified Process
— Agile Methodology

e Software Complexity and Programmer Productivity

SDLC Activities / Steps — Requirements
Engineering

e Establish stakeholders’ needs that are to be satisfied
by the software
* Why Important?
— Cost of correcting errors
* Grows exponentially as we move to maintenance phase
* How to get it right?
— Elicit, Analyze, Specify, Validate, Manage - Iterate

SDLC Activities / Steps — Design

* Translate Requirements to internal structure

— Architecture, Interface, Component, Data structure,
algorithm

SDLC Activities / Steps — Coding

* Translate design into software

 How to get it right? Keep atab on..
— Complexity
— Diversity
— Validation
— Standards

SDLC Activities / Steps — Verification
and Validation

* Have we built the right system? - validation
 Have we built the system right? — verification

* Done at:
— Unit, Integration, System levels

SDLC Activities / Steps — Maintenance

* Deals with handling issues / requests seen after the
software is delivered
e Corrective — Bug fixes
e Perfective — enhancements
* Adaptive — environment changes

oL Waterfall Model

* Go from one phase to another like a cascading
waterfall

Software Concept -~ Requirements Analysis «
Architectural Design<——Detailed Design <—— Coding and
Debugging < System Testing

— Very old
— Pros: Finds errors easily
— Cons: Not flexible

Spiral Model

* Incremental Risk-Oriented Model
— Determine Objectives
— Identify and Resolve Risks
— Develop and Test Software
— Plan Next Iteration
Iterate...

— Cons: Complex, Dependent on Risk Analysis, Requires Specific
Expertise

— Pros: Risk Reduction, Easy to Enhance, Software Produced Early

~2=0 Evolutionary Prototyping

* Evolve an initial prototype based on customer
feedback
— Start with an initial Prototype
— Design and Implement the Prototype
— Refine Until Acceptable
— Complete and Release

— Pros: Immediate Feedback, Helps Requirements Understanding
— Cons: Difficult to Plan, Can Deteriorate to Code-and-fix

Rational Unified Process

e Use Unified Modeling Language (UML) to formally
capture the order and duration of different activities

— Inception, Elaboration, Construction, Transition

T Agile

* Be more flexible (trading off discipline) in
accommodating changes in requirements

— Fail, Pass, Refactor

Choosing A Model

Requirements Understanding
Expected Lifetime

Risk

Schedule Constraints
Interaction with Customers
Expertise

Tools for Software Engineering

e Software Complexity vs. Developer Productivity

A

Software Size and Complexity

Desired Developer Productivity
/// Developer Productivity

[
»

* Productivity:
— Development : punch cards vs. IDE (Eclipse, Microsoft Visual Studio)
— Language: machine code vs. high-level language (e.g. C++, SQL)
— Debugging: print statements vs. debuggers (e.g. GDB)

— Others: Version control (e.g. Git), Code coverage and verification (e.g.
Coverity, GCov)

