
Team: Ashish Kupsad, Biju Amruta Dathan, Hemanth Reddy,
Paritosh Gavali

Challenges/Issues Dart tries to solve

• Large scale application development in JavaScript requires a lot of
effort, if not impossible.

• JavaScript lacks structuring mechanisms, tools, editors, code
analyzers.

• JavaScript Frameworks and Libraries – jQuery, Backbone, Knockout,
Angular, React, Ember, Aurelia, Bootstrap etc, are so vast and different
in their architectural style.

• Different languages compiling to JavaScript like GWT (compiles Java
to JS), Pyjamas (Python to JS). Dart is such an example

Released in 2013, Dart was meant as a replacement to the traditional
JavaScript in browsers

Goal of Dart

Help app developers
write complex, high

fidelity client apps for
the modern web.

Some history

- Dart was first unveiled at the GOTO conference in Aarhus, Denmark,
October 10–12, 2011. The project was founded by Lars Bak and
Kasper Lund of Google.

- Apparently, Google engineers were reportedly frustrated with
maintaining massive JavaScript code bases for Gmail and Google
Maps, and so they began working on an alternative language

- Dart 1.0 was released on November 14th, 2013. In August 2018,
Dart 2.0 was released(featured improvements to client-side
development, including strong typing and “UI as code”).

- Dart 2.6 introduced a new extension, dart2native. The feature
extends native compilation to the Linux, macOS, and Windows
desktop platforms.

What is Dart

• Dart is an open-source, scalable programming language, with
robust libraries and runtimes, for building web, server, and
mobile apps for multiple platforms.. It is developed by Google

• Dart is class based, purely object oriented,(similar to Smalltalk,
Ruby and Scala) - so even basic types (int, float) are objects.

• It is a dynamic language like JavaScript.
• Dart supports optional static typing and type checks
• Dart supports single inheritance with support for mixins
• Dart supports Real lexical scoping and closures

What is Dart (cont.)

• Dart is heavily influenced by JavaScript, Java and C#
• It has familiar syntax of Java/C# and incorporates ideas

from JavaScript.

Dart is comprised of the following:
- Language and libraries
- Tools
- Virtual Machine
- Compiler to JavaScript

What is Dart (Cont..)

• Influenced by Strongly typed languages like Java, C# and loosely typed
dynamic language like JavaScript

Feature Dart Java / C# JavaScript

Type system Optional, dynamic Strong, static Weak, dynamic

First class functions Yes Can simulate with
anonymous functions

Yes

Closures Yes Yes, with anonymous
classes

Yes

Classes Yes, single inheritance Yes, single inheritance Prototypal

Interfaces Yes, multiple inheritance Yes, multiple inheritance No

Concurrency Yes, with isolates Yes, with threads Yes, with HTML5 web
workers

Popularity of Dart

Table taken from PYPL (PopularitY of Programming Language)

Dart-lang SDK contributions graph

Advantages of Dart:

1. Fast performance
2. Ease of learning
3. Availability of good documentation
4. Very stable and has robust libraries
5. AOT and JIT compilation
6. write Dart program without any installation or

configuration via DartPad

Basic Concepts

• Dart parses all your code before running it. You can provide tips
to Dart—for example, by using types or compile-time
constants—to catch errors or help your code run faster.

• Dart supports top-level functions (such as main()), as well as
functions tied to a class or object (static and instance methods,
respectively). You can also create functions within functions
(nested or local functions).

• Similarly, Dart supports top-level variables, as well as variables
tied to a class or object (static and instance variables).

Basic Concepts

• Unlike Java and some other languages, Dart doesn’t have the
keywords public, protected, and private. If an identifier starts with an
underscore (_), it’s private to its library.

• Identifiers can start with a letter or ‘_’, followed by any combination of
those characters plus digits.

• Dart tools can report two kinds of problems: warnings and errors.
Warnings are just indications that your code might not work, but they don’t
prevent your program from executing. Errors can be either compile-time or
run-time. A compile-time error prevents the code from executing at all; a
run-time error results in an exception being raised while the code
executes.

Modes

• Dart VM has two runtime modes: production and checked. It is
recommended that you develop and debug in checked mode, and
deploy in production mode.

• Production mode is the default runtime mode of a Dart program,
optimized for
speed. Production mode ignores assert statements and static types.

• Checked mode is a developer-friendly mode that helps you catch
some type errors during runtime. For example, if you assign a
non-number to a variable declared as a num, then checked mode
throws an exception.

Creating native mobile apps via Flutter

● Google introduced Flutter for native mobile app
development on both Android and iOS.

●

● Flutter is easy to program in, and developers generally
like the idea of developing cross-platform with a single
code-base

● Flutter/Dart supports IDEs such as Visual Studio Code,
Android Studio, and Intellij Idea.

Basics - First Dart Program
// Entry point to Dart program
main() {
print('Hello from Dart');

}

• main() - The special, required, top-level function where app execution starts.
• Every app must have a top-level main() function, which serves as the entry

point to the app.
• Returns void and has an optional List<String> parameter for arguments.

void main(List<string> args) {
print('Hello from Dart');
print(args[0] + ", " + args[1]);

}

dartplay.dart arg1 arg2
Hello from Dart
arg1, arg2

// Command to run dart

Comments
• Dart supports both single line and multi line comments

similar to C,C++,Java,..

// Single line comment

/* This is an
example
of multi line comment
*/

/*
This is also an example of
multi line comment
*/

Variables

• Variables are declared using var keyword similar to
JavaScript.
var name = 'Bob';

• Variables are references.

• Uninitialized variables have an initial value of null. Even
variables with numeric
types are initially null, because numbers are objects.

Built-in types

• number
• int - Integer values, which generally should be in the range -253 to 253
• double - 64-bit (double-precision) floating-point numbers, as specified by

the IEEE 754 standard
• string
• boolean – true and false
• symbol
• Collections

• list (arrays)
• map
• queue
• set

String Interpolation
• Identifiers could be added within a string literal using $identifier or
$variable_name syntax.

var user = 'Bill';

var city = 'Bangalore';

print("Hello $user. Are you from $city?");

// prints Hello Bill. Are you from Bangalore?

• You can put the value of an expression inside a string by using ${expression}

print('3 + 5 = ${3 + 5}'); // prints 3 + 5 = 8

List
• Perhaps the most common collection in nearly every programming

language is the array, or ordered group of objects.

• In Dart, arrays are List objects, so we usually just call them lists.

var numbers = [1,2,3,4,5];

var cities = ['Bangalore', ‘Kolkata', ‘Chennai'];

Control flow statements

• if and else

• for loops (for and for in)

•while and do while loops

•break and continue

•switch and case

if and else
• if and else
var age = 17;

if(age >= 18){

print('you

}
else{

print('you
}

can vote');

can not vote');

• curly braces { } could be omitted when the blocks have a single line of code
var age = 17;

if(age >= 18)

print('you can vote');

else
print('you can not vote');

else if
• Supports else if as expected
var income = 75;

if (income <= 50){

print('tax rate is 10%');}
else if(income

print('tax
}
else{

print('tax
}

>50 && income <80){
rate is 20%');

rate is 30%');

• curly braces { } could be omitted when the blocks have a single line of code
if (income <= 50)

rate is 10%');
>50 && income <80)
rate is 20%');

print('tax
else if(income

print('tax
else

print('tax rate is 30%');

for loops
• Supports standard for loop (as supported by other languages that follow C like

syntax)
for(int ctr=0; ctr<5; ctr++){

print(ctr);

}

• Iterable classes such as List and Set also support the for-in form of iteration
var cities = ['Kolkata','Bangalore','Chennai','Delhi'];

for(var city in cities){
print(city);

}

• Iterable classes also support forEach method
var cities = ['Kolkata','Bangalore','Chennai','Delhi'];

cities.forEach((city) => print(city));

switch case
• Switch statements compare integer, string, or compile-time constants using ==
• Enumerated types work well in switch statements
• Supports empty case clauses, allowing a form of fall-through

var window_state = 'Closing';
switch(window_state){

case 'Opening':
print('Window is opening');

case
break;

'Opened':
print('Window is opened');

break;
case 'Closing':

print('Window
break;

is closing');

case 'Closed':
print('Window is closed');

break;
case 'Terminating':
case 'Terminated':

print('Window is terminating or terminated');

break;
}

Object Oriented Features

• Supports single inheritance and multiple interfaces.

• Dart’s OO model is similar to Java/C# and not similar to
JavaScript. Dart supports class based inheritance, and
not prototypal inheritance supported by JavaScript.

Class
• Dart is an object-oriented language with classes and mixin-based inheritance.
• Every object is an instance of a class, and all classes descend from Object

Instance Variables:

class Employee{
String firstName;
String lastName;
int age;
double salary;

}

main(){
var emp = new Employee();

emp.firstName = "Lars";
emp.lastName = "Bak";
print(emp.firstName);
print(emp.lastName);

}

Class constructor
• The pattern of assigning a constructor argument to an instance variable is so

common, Dart has syntactic sugar to make it easy.
• If you don’t declare a constructor, a default constructor is provided for you. It has no

arguments and invokes the no-argument constructor in the superclass.

class Employee{
String firstName;
String lastName;
int age;
double salary;
Employee(this.firstName,

}

//this is syntactic sugar of above class
Employee(firstName, lastName, age, salary){

this.firstName = firstName;
this.lastName = lastName;
this.age = age;
this.salary = salary;

}

this.lastName, this.age, this.salary);

Class constructor (cont.)

main(){
var emp =
new Employee('Lars','Bak',45,550.67);
print(emp.firstName);
print(emp.lastName);
print(emp.age);
print(emp.salary);

}

First Class Functions

• Dart is similar in many ways to languages such as Java
and C#, but its function syntax is more similar to that found
in JavaScript than in more strongly typed languages.

• Everything is an object, including functions, which means you
can store a function in a variable and pass it around your
application the same way that you might pass a String, an
int, or any other object. This is called first-class functions,
because they’re treated as equivalent to other types.

Functions

display(){

print('Hello from Dart');

}

add(num1,num2){

return
num1+num2;

}

int add(int num1, int num2){
return num1+num2;

}

Better to specify
Type annotations

Declaring functions with => syntax

• For functions that contain just one expression, you can use a shorthand syntax
• The => expr; syntax is a shorthand for { return expr;}
• Only an expression, not a statement, can appear between arrow (=>) and

semicolon (;). For example, you can’t put an if statement there, but you can use a
conditional expression.

void display(){

print('Hello from Dart');

}

var display = () => print('Hello from Dart');

int add(int num1, int num2){

return num1+num2;
}

var add = (x,y) => x+y;

Optional named parameters

int add(int num1, [int num2 = 5]){
return num1 + num2;

}

// num2 is optional with default value 5

print(add(20,10));

print(add(20));

Optional positional parameter

• Wrapping function parameters in [] marks them as optional positional parameters
void display(String message, [string user]){

if(user == null)

print(message);

else

print("Hello $user. $message");

}

display("Welcome to Dart","Ani");

display("Welcome to Dart");
// Hello Ani. Welcome to Dart

// Welcome to Dart

• Optional positional parameters can have default value
void display(String message, [string user

print("Hello $user. $message");

}

= "User"]){

display("Welcome to Dart","Ani");

display("Welcome to Dart");

// Hello Ani. Welcome to Dart

// Hello User. Welcome to Dart

Method Cascades

• Inspired from Smalltalk, Basic/VB also supports this style using with keyword
• .. is the cascaded method invocation operation. The ".." syntax invokes a method

(or setter or getter) but discards the result, and returns the original receiver instead
• Helps writing code in Fluent API style

class Employee{

var name;

var age;
var designation;

var salary;

Employee(this.name,this.age);

}

var emp = new Employee(‘XYZ',30)

.. designation = "CEO"

.. salary = 100.50;

Mixins

Vehicle

Car HasAC

Mixin

Base class

Inheritance hierarchy

GrandParent

Parent

Child

Parent1

Child

Single Inheritance

Parent2

Multiple Inheritance using
Inheritance hierarchy

GrandParent1 GrandParent2

Mixins
• A mixin is a class that contains a combination of methods from other classes. How

such a combination is done depends on the language.
• Described as being "included" rather than "inherited".
• Mixins encourage code reuse and can be used to avoid the inheritance ambiguity

that multiple inheritance can cause. Mixins are a way of reusing a class’s code in
multiple class hierarchies.

• Originated in LISP. Variants found in Ruby, Scala, Newspeak.
• Restrictions on mixin definitions in Dart include:

• Must not declare a constructor
• Superclass is Object
• Contains no calls to super

• You can use the mixin with the with keyword
class Child extends Parent with Utility1, Utility1 {

}

Parent

Child Utility1

Mixin

Base class

Inherits

Includes

Utility2

Includes

Mixins
// Base class
class Vehicle{

int noOfWheels;
drive(){

print('I
}

}

can move');

// Mixin – implemented as abstract class
abstract class HasAC{

double temperature = 20;
void increaseTemperature(double by){

temperature += by;
}
void decreaseTemperature(double by){

temperature -= by;
}

}

class Car extends Vehicle with HasAC{
int noOfWheels = 4;

}

main(){
var car = new Car();

car.drive();
// prints I can move

car.decreaseTemperature(5);

print(car.temperature);
// prints 15

}

Vehicle

Car HasAC

Mixin

Base class

Single inheritance hierarchy

inherits

includes

Mixins (Cont’d)
// Base class
class Vehicle{

int noOfWheels;
var drive = () => print('I can move');

}

// Mixin – implemented as abstract class
abstract class HasAC{

double temperature = 20;
void increaseTemperature(double by){

temperature += by;
}
void decreaseTemperature(double by){

temperature -= by;
}

}

abstract class HasRadio{
String channel = 'bbc';
void setChannel(channel){

this.channel = channel;
}
void play(){

print('Playing $channel');
}

}

class Car extends Vehicle with
int noOfWheels = 4;

}

HasAC, HasRadio{

main(){
var car = new Car();
car.drive();
car.decreaseTemperature(5);
print(car.temperature);

}

Vehicle

Car HasAC

Mixin

Base class

inherits

HasRadio
includesincludes

Metadata (@)
• Use metadata to give additional information about your code. A metadata

annotation begins with the character @, followed by either a reference to a
compile-time constant (such as deprecated) or a call to a constant constructor.

• Two annotations are available to all Dart code: @deprecated and @override. For
examples of using @override, see Extending a class. Here’s an example of using
the @deprecated annotation:

@deprecated @override

class Television {
 /// _Deprecated: Use [turnOn]
instead._
 @deprecated
 void activate() {
 turnOn();
 }

 /// Turns the TV's power on.
 void turnOn() {...}
}

class SmartTelevision extends
Television {
 @override
 void turnOn() {...}
 // ···
}

Isolate and Asynchronous Operations
• Inspired by Actor Model of solving concurrency issues in Erlang,

Scala and other languages.

• Most computers, even on mobile platforms, have multi-core
CPUs. To take advantage of all those cores, developers
traditionally use shared-memory threads running concurrently.
However, shared-state concurrency is error prone and can lead to
complicated code.

• Instead of threads, all Dart code runs inside of isolates. Each
isolate has its own memory heap, ensuring that no isolate’s state
is accessible from any other isolate.

Where is Dart used?

● Mainly Flutter apps
○ Google Ads: helps customers keep their ad campaigns running smoothly on the

go.

Where is Dart used? Cont.

○ KlasterMe: an app for creating, sharing, and discovering

different forms of content from images to articles.

Where is Dart used? Cont.

○ Xianyu, Alibaba: has 50M+ downloads.and more than 10 millions

users use this app daily.

Where is Dart used? Cont.

● Fuchsia (an open-source operating system built by
Google) is also built with Dart and the recently
introduced Google Home Hub will possibly run
Fuchsia in the future.

● Google Assistant: The Assistant team at Google uses

Dart for features in Smart Displays.

● Google uses Dart for building critical Web apps, utilised
with AngularDart.

 Ashish Kupsad

 Biju Amruta Dathan

 Hemanth Reddy

 Paritosh Gavali

