
CS101C: Introduction to Programming
(Using C)
Autumn 2025

Week9: Recap of Functions, Recursion, Review of Midsem
Exam Paper

1

Nikhil Hegde
Achyut Mani Tripathi

Recap: Functions
int main(){

int a=10;

int b=20;

swap(a, b);

printf(“a=%d b=%d”,a,b); // prints a=10, b=20

}

Call-by-value
2

Recap: Functions
void swap(int a, int b){

int tmp = a;

a = b;

b=tmp;

return;

}

3

Recap: Functions
int main(){

int a=10;

int b=20;

swap2(&a, &b);

printf(“a=%d b=%d”,a,b); // prints a=20, b=10

}

Call-by-reference
4

Recap: Functions
void swap2(int *a, int *b){

int tmp = *a;

*a = *b;

*b=tmp;

return;

}

5

Recap: Functions Declaration vs.
Function Definition

● void swap2(int *a, int *b); //declaration
● //definition follows

void swap2(int *a, int *b){

int tmp = *a;

*a = *b;

*b=tmp;

return;

} 6

Recap: Functions Declaration vs.
Function Definition

● Why you need a declaration?

So that you do not have to define the function before the
function call site.

○ You can define a function after the call site in the same
.c file

○ You can define a function in another .c file!

7

• Function calling itself!

Recursion

int factorial(int n)
{

if(n == 0)
return 1;

else
return n * factorial(n-1);

}

• Better to think of recursion as a problem solving
technique rather than a programming principle.

• A common pattern in problem solving:

1. Break the problem into smaller problems

2. Apply the same function to solve the smaller
problems

3. Use the solutions created in previous step to solve
original problem

Recursion

• Is the pattern never ending?

 No.

• Repeating the process creates smaller and smaller
problems. Eventually, the problem becomes trivial to solve.

 trivial problem = base case

Recursion

•n! is just n * (n-1)!

Break the problem into smaller version of the same problem
(step 1)

Example - Factorial

int factorial(int n)
{

if(n == 0)
return 1;

else
return n * factorial(n-1);

}

• call factorial again to solve the smaller problem

Solve the smaller problem by calling the same function
(step 2)

Example - Factorial

int factorial(int n)
{

if(n == 0)
return 1;

else
return n * factorial(n-1);

}

• Multiply the result of previous step (calling
factorial(n-1)) by n to find factorial(n)

Use the solution of the smaller problem to solve the original
problem (step 3)

Example - Factorial

int factorial(int n)
{

if(n == 0)
return 1;

else
return n * factorial(n-1);

}

• The base case is simple: we know that
factorial(0) = 1

Example - Factorial

int factorial(int n)
{

if(n == 0)
return 1;

else
return n * factorial(n-1);

}

• Intuitive

• Easier way to think of a solution

• Sometimes, the only way to effectively solve a
problem!

Why recursive codes?

• Think inductively:

• Assume that the recursive function already works, but..
 only on smaller problems than the original problem

• Write recursive function for the original problem
assuming it works

• Write correct base case

Why recursive codes work?

•Factorial example:

• Assume that factorial(n-1) works

• If we have (n-1)!computing n! is easy:
 just multiply by n

• Make sure that there exists a working base case: provide
answer to the smallest argument passed to factorial

Why recursive codes work?

• Computing sum of array elements – toy example

Divide-and-Conquer – A common
recursive pattern

int sum(int * arr, int nels)
{

if (nels == 1)
return arr[0];

int sum1 = sum(arr, nels/2);
int sum2 = sum(&arr[nels/2], (nels + 1)/2);
return sum1 + sum2;

}

• Computing sum of array elements – toy example

Divide-and-Conquer – A common
recursive pattern

int sum(int * arr, int nels)
{

if (nels == 1)
return arr[0];

int sum1 = sum(arr, nels/2);
int sum2 = sum(&arr[nels/2], (nels + 1)/2);
return sum1 + sum2;

}

• A problem can be broken into two or more smaller
problems of similar or related type

• More realistic examples:

Quicksort, Merge sort, finding closest pair of points

Divide-and-Conquer

• Can have multiple base cases

• Fibonacci series

• Tail recursion

• Factorial

Recursion – observations

Midsem Exam Revision
Return type of the built-in function that computes the length of
a string in C is:

22

Midsem Exam Revision
Select the correct answer after matching: 1. Command to create a file. 2.
Command to translate a human-readable file to binary. 3. Command to
print a file on the terminal. 4. Command to delete a file

A. gcc B. gedit c. cat d. rm e. del

23

Compiler.
Translates a
programming
language to
machine code

Editor. Used to
create a file.

Command to print
on terminal
(concatenate files)

Command to
delete a file

Answer option a or e will be
awarded marks.

Midsem Exam Revision

24

Midsem Exam Revision
The following code snippet: char* x=”CSE”; printf(“%c”,1[x]);
when executed, would:

25

Midsem Exam Revision
The following code snippet: int x=5; printf(“%zu”,sizeof(x));
when executed, would print:

26

Midsem Exam Revision
Assuming that integer variable y has been defined and
initialized, the correct way of initializing a pointer in C is:

int *x=&y;

int* x=&y;

int * x=&y;

(not the blankspaces. They don’t matter here.) 27

Midsem Exam Revision
Assuming that integer variables a=10 and b=0, the result of
the expression a&&b is:

28

Midsem Exam Revision
The condition in if(a=100) has a value: 100

29

Midsem Exam Revision
Assuming that integer variables a=64 and b=2, the result of
the expression a>>b is:

30

Midsem Exam Revision
The binary equivalent of 0xC5E is: 1100 0101 1110

31

Midsem Exam Revision
Assuming that integer variables a=10, b=3 the result of the expression
(a=b+2, a*2) is:

32

Midsem Exam Revision
Assuming that integer variables a=10,b=20,c=5, and d=0 the result of the
expression (d+=a?b:c) is:

33

Midsem Exam Revision

34

Midsem Exam Revision
The following code snippet, when executed, would print

35

Midsem Exam Revision
 In the following code snippet, which line would be a syntax error?

1. int x1[]={‘C’,’S’,’E’,0};

2. int *x2=x1;

3. int x3[3]={0x43, 0x53, 0x45};

4. int x4[4]={0x43, 0x53, 0x45, 0};

None. All are valid.

● 1 is initializing an integer array using initializer list. The initialized values are
equivalent ASCII values of characters and 0.

● 2 is initializing a pointer. 3 (and 4) same as 1 but initializing hexadecimal values
(and 0)

36

Midsem Exam Revision
The following code snippet, when executed, would print

37

Midsem Exam Revision
The following code snippet, when executed, would print

38

