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Recap: Functions
int main(){

int a=10;

int b=20;

swap(a, b);

printf(“a=%d b=%d”,a,b); // prints a=10, b=20

}

Call-by-value
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Recap: Functions
void swap(int a, int b){

int tmp = a;

a = b;

b=tmp; 

return;

}
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Recap: Functions
int main(){

int a=10;

int b=20;

swap2(&a, &b);

printf(“a=%d b=%d”,a,b); // prints a=20, b=10

}

Call-by-reference
4



Recap: Functions
void swap2(int *a, int *b){

int tmp = *a;

*a = *b;

*b=tmp; 

return;

}
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Recap: Functions Declaration vs. 
Function Definition

● void swap2(int *a, int *b); //declaration
● //definition follows

void swap2(int *a, int *b){

int tmp = *a;

*a = *b;

*b=tmp; 

return;

} 6



Recap: Functions Declaration vs. 
Function Definition

● Why you need a declaration?

So that you do not have to define the function before the 
function call site.

○ You can define a function after the call site in the same 
.c file

○ You can define a function in another .c file!
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• Function calling itself!

Recursion

int factorial(int n)
{

if(n == 0)
return 1;

else
return n * factorial(n-1);

}



• Better to think of recursion as a problem solving 
technique rather than a programming principle.

• A common pattern in problem solving:

1. Break the problem into smaller problems

2. Apply the same function to solve the smaller 
problems

3. Use the solutions created in previous step to solve 
original problem

Recursion



• Is the pattern never ending?

   No.

• Repeating the process creates smaller and smaller 
problems. Eventually, the problem becomes trivial to solve.

  trivial problem = base case 

Recursion



•n!     is just     n * (n-1)!

Break the problem into smaller version of the same problem 
(step 1)

Example - Factorial

int factorial(int n)
{

if(n == 0)
return 1;

else
return n * factorial(n-1);

}



• call factorial again to solve the smaller problem

Solve the smaller problem by calling the same function         
(step 2)

Example - Factorial

int factorial(int n)
{

if(n == 0)
return 1;

else
return n * factorial(n-1);

}



• Multiply the result of previous step (calling 
factorial(n-1)) by n to find factorial(n)

Use the solution of the smaller problem to solve the original 
problem  (step 3)

Example - Factorial

int factorial(int n)
{

if(n == 0)
return 1;

else
return n * factorial(n-1);

}



• The base case is simple: we know that 
factorial(0) = 1

Example - Factorial

int factorial(int n)
{

if(n == 0)
return 1;

else
return n * factorial(n-1);

}



• Intuitive

• Easier way to think of a solution

• Sometimes, the only way to effectively solve a 
problem!

Why recursive codes?



• Think inductively:

• Assume that the recursive function already works, but..
   only on smaller problems than the original problem

• Write recursive function for the original problem 
assuming it works

• Write correct base case

Why recursive codes work?



•Factorial example:

• Assume that factorial(n-1) works

• If we have (n-1)!computing n! is easy: 
   just multiply by n

• Make sure that there exists a working base case: provide 
answer to the smallest argument passed to factorial

Why recursive codes work?



• Computing sum of array elements – toy example

Divide-and-Conquer – A common 
recursive pattern

int sum(int * arr, int nels) 
{ 

if (nels == 1) 
return arr[0]; 

int sum1 = sum(arr, nels/2); 
int sum2 = sum(&arr[nels/2], (nels + 1)/2); 
return sum1 + sum2; 

}



• Computing sum of array elements – toy example

Divide-and-Conquer – A common 
recursive pattern

int sum(int * arr, int nels) 
{ 

if (nels == 1) 
return arr[0]; 

int sum1 = sum(arr, nels/2); 
int sum2 = sum(&arr[nels/2], (nels + 1)/2); 
return sum1 + sum2; 

}



• A problem can be broken into two or more smaller 
problems of similar or related type

• More realistic examples:

Quicksort, Merge sort, finding closest pair of points

Divide-and-Conquer



• Can have multiple base cases

• Fibonacci series

• Tail recursion

• Factorial

Recursion – observations



Midsem Exam Revision
Return type of the built-in function that computes the length of 
a string in C is:
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Midsem Exam Revision
Select the correct answer after matching: 1. Command to create a file. 2. 
Command to translate a human-readable file to binary. 3. Command to 
print a file on the terminal. 4. Command to delete a file

A. gcc B. gedit c. cat d. rm e. del
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Compiler. 
Translates a 
programming 
language to 
machine code

Editor. Used to 
create a file.

Command to print 
on terminal 
(concatenate files)

Command to 
delete a file

Answer option a or e  will be 
awarded marks.



Midsem Exam Revision
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Midsem Exam Revision
The following code snippet: char* x=”CSE”; printf(“%c”,1[x]); 
when executed, would:
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Midsem Exam Revision
The following code snippet: int x=5; printf(“%zu”,sizeof(x)); 
when executed, would print:
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Midsem Exam Revision
Assuming that integer variable y has been defined and 
initialized, the correct way of initializing a pointer in C is:

int *x=&y;

int* x=&y;

int * x=&y; 

(not the blankspaces. They don’t matter here.) 27



Midsem Exam Revision
Assuming that integer variables a=10 and b=0, the result of 
the expression a&&b is:

28



Midsem Exam Revision
The condition in if(a=100) has a value: 100
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Midsem Exam Revision
Assuming that integer variables a=64 and b=2, the result of 
the expression a>>b is:
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Midsem Exam Revision
The binary equivalent of 0xC5E is: 1100 0101 1110  
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Midsem Exam Revision
Assuming that integer variables a=10, b=3 the result of the expression 
(a=b+2, a*2) is:
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Midsem Exam Revision
Assuming that integer variables a=10,b=20,c=5, and d=0 the result of the 
expression (d+=a?b:c) is:
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Midsem Exam Revision
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Midsem Exam Revision
The following code snippet, when executed, would print
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Midsem Exam Revision
 In the following code snippet, which line would be a syntax error?

1. int x1[]={‘C’,’S’,’E’,0};

2. int *x2=x1;

3. int x3[3]={0x43, 0x53, 0x45};

4. int x4[4]={0x43, 0x53, 0x45, 0};

None. All are valid. 

● 1 is initializing an integer array using initializer list. The initialized values are 
equivalent ASCII values of characters and 0.

● 2 is initializing a pointer. 3 (and 4) same as 1 but initializing hexadecimal values 
(and 0)
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Midsem Exam Revision
The following code snippet, when executed, would print
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Midsem Exam Revision
The following code snippet, when executed, would print
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