CS101C: Introduction to Programming
(Using C)

Autumn 2025

Nikhil Hegde
Achyut Mani Tripathi

Week6: More multidimensional Arrays, Pointers

Last class (4/9/2025)

e Recap of multidimensional arrays
e Demo program on reversing an array in multiple ways.

1. Using a duplicate array (recall: arr2[10])

2. Using just one temporary variable (recall: tmp=arr[i])

- With and without multiple expressions Expression1/E1 and Expression2/E2 of
for loop (recall: for(i=0,j=9;i<5 && j>=5;i++,j--))

3. Not using any temporary variable (recall: a=a+b;b=a-b;a=a-b;)

e Multiple Choice Questions (MCQ3.c posted in Google Classroom)
covering arrays and loops.

Today’s class (8/9/2025)

e Demo program with multidimensional arrays
a. Transpose of a Matrix of integers
e Pointers

Transpose of a Matrix

e |Initialize 2D Array of size 3

for(int i = 0; 1 < 3; i++){
for(int j = 1i; j < 3; j++){

int tmp = a[i][]];
a[1][3] = a[J][i];
a[j][i] = tmp;

}
}

e Print transposed array

Pointers

A pointer is a variable that holds the address of another variable
Machine memory consists of consecutively numbered cells (analogy: boxes).
These numbers are addresses. Each cell is of width = 1 byte.

100 101 102 103 104 105 106 107 108 109 110 111 112 113

Two consecutive cells = short, 4 consecutive cells = int, one cell = char

Pointers

If p is a pointer that holds the address of a char x

P — T\X

105

100 101 102 103 104 105 106 107 108 109 110 111 112 113

How do we define the pointer p? How do we initialize it to hold an
address i.e. how do we get the addresses?

Use the & (“address of”) operator to get the address of x
char x="A’;

char* p; p=&x;

Pointers

e |If p is a pointer that holds the address of a int x
p//////”—__“““\\\\g

120

100 104 108 112 116 120 124 128 132 136 140 144 148 152
int x=1234;
int* p;

=&X;
Note: P
e & operator can’t be applied to expressions and constants
e Pointers always point to specific data types (e.g. int and char in previous slides).7
Exception: void type

Pointers

e *is the indirection or dereference operator
p/_\X

120

100 104 108 112 116 120 124 128 132 136 140 144 148 152

e \When applied to a pointer, it gives you the value at the address
pointed to by the pointer

int x=1234;
int* p;

p=&x; int y=*p; // Now you can use *p wherever you wish to use x.

Pointers

e *is the indirection or dereference operator

p/\f

120

100 104 108 112 116 120 124 128 132 136 140 144 148 152

e \When applied to a pointer, it gives you the value at the address
pointed to by the pointer

int x=1234;
int* p;
p=8&X; // Now you can use *p wherever you wish to use x.

int y=*p; [//*p="p +10; ++"p; what is the value of x after this?

Pointers and Arrays

e Pointers and Arrays share a strong relationship

e Recall:

int arr[10]={10,20,30,40,50,60,70,80,90,100}
arr[0] arr[1l] arr[2] arr[3] arr[4] arr[5] arr[6] arr[7] arr[8] arr[9]
10 20 30 40 50 60 70 80 90 100

Address:100 104 108 112 116 120 124 /128 132 136
e 1int *p=&arr[7]; //Perfectly fine to do this.

e *p gives you the value 80. E.g. printf(“%d”, *p);
e p+1, by definition, points to the next element of the array, arr[8]. p-1
points to the previous element, arr[6]. printf(“%d”,*(p+1));

10

Today’s class (10/9/2025)

e More Pointers

rpleatonotpaind
Medd ng-Enetions:

e Pointer to character arrays

11

What does *p++ give you?

Exercise:

12

Pointers and Arrays

e Array name is a synonym for the location of the first element i.e.

int arr[10]={10,20,30,40,50,60,70,80,90,100}

arr /
arr[0] arr[1l] arr[2] arr[3] arr[4] arr[5] arr[6] arr[7] arr[8] arr[9]
10 20 30 40 50 60 70 80 90 100

Address:100 104 108 112 116 120 124 128 132 136

e How do you get the location of first element? &arr[0]
e How do you initialize a pointer to this location?

int * p= &arr[0];
Alternatively: int *p=arr;

Go through pointer1.c and pointer2.c shared in the code examples. "

Recap: Pointers and Arrays

e Can we call an array of characters as String?

.) Recall: string is a sequence of characters
int main(){ So, is arr same as the string “HELLO”

char arﬁI@TZTTﬁTjTETjT[TTTL','0'}3
char* ptrC=arr;
for(int i=0;i<5;i++){

printf("%c", *ptrC);

ptrC++;
}
printf("%s",ptrC); e s is format specifier to print strings.

14

} Is this printf statement safe?

Recap: Pointers and Arrays

e Can we call an array of characters as String?
int main(){
char arr[5]={'H','E',300,'L"',"'0"};
char* ptrC=arr;
printf("%s",ptrC); //Is this safe? What does this print?

15

Recap: Pointers and Arrays

e \What is a String and how does it differ from character
array?

o A string has an invisible NULL character at the end of
the sequence of characters. The NULL character is
also called as terminator.

o When we refer to string “HELLO?, the sequence of
characters consists of ‘H’, ‘E’, 'L, ‘L', ‘O’, and 0

‘H ‘E’ ‘L L ‘O’ 0
Address:100 101 102 103 104 105

16

Recap: Pointers and Arrays

Wait. How can 0 be part of a sequence of characters? O is
an integer. ??77?

Recall: a char is of size one byte in memory. The binary
representation/equivalent of a character is decided as per
the ASCII table. E.g. ‘A’ = 0x41. ‘'0'=0x30 etc. ?=0x0

When we print a string using format specifier %s, the printf
peels of one character after another and prints until a O is
encountered.

17

Today’s class (12/9/2025)

e More Pointers

rpleatonotpaind
Medd ng-Enetions:

e Pointer to character arrays and string constants

18

Pointers and Strings

e \When we refer to string “HELLO?, the sequence of
characters consists of ‘H’, ‘E’, 'L’, 'L’, ‘O’, and 0
o We can refer to this sequence using a pointer:

char *str="HELLO”";

‘H’ ‘E’ v N ‘O’ 0
Address:[100 101 102 103 104 105

100 printf(“%c”,*str); //prints H
str

printf(“%c”,*(str+l)); //prints E

19

Pointers and Strings

e \When we refer to string “HELLO?, the sequence of
characters consists of ‘H’, ‘E’, 'L’, 'L’, ‘O’, and 0
o We can refer to this sequence using a pointer:

char *str="HELLO”";

‘H’ ‘E’ v N ‘O’ 0
Address:[100 101 102 103 104 105

100 IMPORTANT: the cells belong to a region
str of memory called constant memory

Pointers and Strings

e the cells belong to a region of memory called constant
memory

char *str="HELLO”";

‘H’ ‘E’ v N ‘O’ 0
Address:[100 101 102 103 104 105

100 *str="Y’; //NOT ALLOWED
str

Pointers and Strings - Example

int main(){
char *str;

str

22

Pointers and Strings - Example

int main(){
char *str;
str = “HELLO”;

H

E

Addr‘ess:l@@\fl‘@l\lez

L

L

O

100

str

103

104

105

23

Pointers and Strings - Example

H E L L o) 0
int main(){ Addr‘ess:l@@\i“@l\lez 103 104 105
char *str; 100
str = “HELLO”; str
char arr[6]={‘H’,’E’,’L’,’L’,”0"};
‘H’ ‘E’ L L ‘O’ 0
Address:500 501 502 503 504 505
arr Recall:array name synonymous

with location of first element.

Also notice that array has 6 cells
reserved. The sixth one is not
explicitly initialized in the initializer
list. So, O is put in the 6th cell. ,

Pointers and S

‘H

E

int main(){
char *str;
str = “HELLO”;

Char\ ar\r\[6]={(HJ,)E),JL.”)L.’,)}O,)};

*str = Y7,

‘H’

‘E’

Address:1@%5\\\f1exL\\\\\\3f?z

trings - Example

Address:

500

501

L L 0 0
103 104 105
100
str
L L o} 0
502 503 504 505

This is legal syntax. Why? Referto
slide 8: int x=1234; int* p; p=&x; int
y=*p; //use *p wherever you wish to use x.

25

Pointers and Strings - Example

H E L L O 0
int main(){ Addr‘ess:l@@\}@l\lez 103 104 105
char *str; 100
str = “HELLO”; str
char arr[6]={‘H’,’E’,’L’,’L’,”0"};
*str = Y’
‘H’ ‘E’ ‘v N ‘O’ 0

Address:500 501 502 503 504 505

But we see a segmentation fault if This is legal syntax. Why? Refer to
we do this assignment. Because slide 8: int x=1234; int* p; p=&x; int
address 100 is in constant memory: y=*p; //use *p wherever you wish to use x.
string constants are allocated cells
in constant memory.

26

Pointers and Strings -

H

E

int main(){
char *str;
str = “HELLO”;

Address:100

101

char aPP[6]={‘H’J’E’,JLJ,JLJ,» ’Y) ;

Exa

mple

str=arr; H E
Address: 500 501
arr

We assign/overwrite a different
value inside str’s cell. Now str
contains the address of the first
element of arr.

L L o) 0
102 103 104 105
500
str
L L ‘0’ 0
502 503 504 505

27

Pointers and Strings - Example

H E L L 0 0
int main(){ address:100 101 102 103 104 105
char *str; 500
str = “HELLO”; str
char arr[6]={‘H’,’E’,’L’,’L’,”0>F;
str=arr; H '‘E L L o} 0
printf(“%s”,str); Address:500 501 502 503 504 505

arr

Printf starts peeling one character
after another starting from address

500 until 9 is encountered.

Go through string.c shared in the code examples.

28

Next week

NI o
VI ine-f ons:
e (Call-by-value, Call-by-reference

e Global variables, static variables
e Sorting

29

Functions

e You have seen functions main, printf, scanf, pow
(anybody?)

int main()
printf(“My name is %s”,name);

scanf(“%d”,&x);

Return values, function name, function arguments / parameters 30

Functions

e Let us define our own function to swap.
void swap(int a, int b){
int tmp = a;
a = b;
b=tmp;
return;

}

Function parameters, return statement, void type

31

Functions

e Let us call the function swap from main.
int main(){
int a=10;
int b=20;
swap(a, b);
printf(“a=%d b=%d”,a,b);
}

Function call, call site.

32

