
CS101C: Introduction to Programming
(Using C)
Autumn 2025

Week6: More multidimensional Arrays, Pointers

1

Nikhil Hegde
Achyut Mani Tripathi

Last class (4/9/2025)
● Recap of multidimensional arrays
● Demo program on reversing an array in multiple ways.

1. Using a duplicate array (recall: arr2[10])

2. Using just one temporary variable (recall: tmp=arr[i])

- With and without multiple expressions Expression1/E1 and Expression2/E2 of
for loop (recall: for(i=0,j=9;i<5 && j>=5;i++,j--))

3. Not using any temporary variable (recall: a=a+b;b=a-b;a=a-b;)

● Multiple Choice Questions (MCQ3.c posted in Google Classroom)
covering arrays and loops.

2

Today’s class (8/9/2025)
● Demo program with multidimensional arrays

a. Transpose of a Matrix of integers
● Pointers

3

Transpose of a Matrix

● Initialize 2D Array of size 3

● Print transposed array

4

for(int i = 0; i < 3; i++){
for(int j = i; j < 3; j++){

int tmp = a[i][j];
a[i][j] = a[j][i];
a[j][i] = tmp;

}
}

Pointers

● A pointer is a variable that holds the address of another variable
● Machine memory consists of consecutively numbered cells (analogy: boxes).

These numbers are addresses. Each cell is of width = 1 byte.

● Two consecutive cells = short, 4 consecutive cells = int, one cell = char

5

100 101 102 103 104 105 106 107 108 109 110 111 112 113

Pointers
● If p is a pointer that holds the address of a char x

● How do we define the pointer p? How do we initialize it to hold an
address i.e. how do we get the addresses?

6

100 101 102 103 104 105 106 107 108 109 110 111 112 113

p x

105

char x=’A’;

char* p; p=&x;

Use the & (“address of”) operator to get the address of x

Pointers
● If p is a pointer that holds the address of a int x

7

100 104 108 112 116 120 124 128 132 136 140 144 148 152

p x

120

int x=1234;

int* p;

p=&x;
Note:

● & operator can’t be applied to expressions and constants
● Pointers always point to specific data types (e.g. int and char in previous slides).

Exception: void type

Pointers
● * is the indirection or dereference operator

8

p x

120

int x=1234;

int* p;

p=&x; int y=*p;

● When applied to a pointer, it gives you the value at the address
pointed to by the pointer

// Now you can use *p wherever you wish to use x.

100 104 108 112 116 120 124 128 132 136 140 144 148 152

Pointers
● * is the indirection or dereference operator

9

p x

120

int x=1234;

int* p;

p=&x;

int y=*p;

● When applied to a pointer, it gives you the value at the address
pointed to by the pointer

// Now you can use *p wherever you wish to use x.

// *p = *p +10; ++*p; what is the value of x after this?

100 104 108 112 116 120 124 128 132 136 140 144 148 152

Pointers and Arrays
● Pointers and Arrays share a strong relationship
● Recall:

10

int arr[10]={10,20,30,40,50,60,70,80,90,100}

10 20 30 40 50 60 70 80 90 100

 arr[0] arr[1] arr[2] arr[3] arr[4] arr[5] arr[6] arr[7] arr[8] arr[9]

● int *p=&arr[7]; //Perfectly fine to do this.
128
p

 Address:100 104 108 112 116 120 124 128 132 136

● *p gives you the value 80. E.g. printf(“%d”,*p);
● p+1, by definition, points to the next element of the array, arr[8]. p-1

points to the previous element, arr[6]. printf(“%d”,*(p+1));

Today’s class (10/9/2025)
● More Pointers
● Application of pointers

a. Modular programming (functions)
● Pointer to character arrays

11

Exercise:
● What does *p++ give you?

12

Pointers and Arrays
● Array name is a synonym for the location of the first element i.e.

13

int arr[10]={10,20,30,40,50,60,70,80,90,100}

10 20 30 40 50 60 70 80 90 100

 arr[0] arr[1] arr[2] arr[3] arr[4] arr[5] arr[6] arr[7] arr[8] arr[9]
 arr /

● How do you get the location of first element? &arr[0]
● How do you initialize a pointer to this location?

int * p= &arr[0];

Alternatively: int *p=arr;

Go through pointer1.c and pointer2.c shared in the code examples.

 Address:100 104 108 112 116 120 124 128 132 136

Recap: Pointers and Arrays
● Can we call an array of characters as String?

14

int main(){

 char arr[5]={'H','E','L','L','O'};

 char* ptrC=arr;

 for(int i=0;i<5;i++){

 printf("%c",*ptrC);

 ptrC++;

 }

printf("%s",ptrC);

}

So, is arr same as the string “HELLO”
Recall: string is a sequence of characters

● %s is format specifier to print strings.
 Is this printf statement safe?

Recap: Pointers and Arrays
● Can we call an array of characters as String?

15

int main(){

 char arr[5]={'H','E',300,'L','O'};

 char* ptrC=arr;

 printf("%s",ptrC); //Is this safe? What does this print?

}

Recap: Pointers and Arrays
● What is a String and how does it differ from character

array?
○ A string has an invisible NULL character at the end of

the sequence of characters. The NULL character is
also called as terminator.

○ When we refer to string “HELLO”, the sequence of
characters consists of ‘H’, ‘E’, ‘L’, ‘L’, ‘O’, and 0

16

‘H’ ‘E’ ‘L’ ‘L’ ‘O’ 0

 Address:100 101 102 103 104 105

Recap: Pointers and Arrays
● Wait. How can 0 be part of a sequence of characters? 0 is

an integer. ???
● Recall: a char is of size one byte in memory. The binary

representation/equivalent of a character is decided as per
the ASCII table. E.g. ‘A’ = 0x41. ‘0’=0x30 etc. ?=0x0

● When we print a string using format specifier %s, the printf
peels of one character after another and prints until a 0 is
encountered.

17

Today’s class (12/9/2025)
● More Pointers
● Application of pointers

a. Modular programming (functions)
● Pointer to character arrays and string constants

18

Pointers and Strings
● When we refer to string “HELLO”, the sequence of

characters consists of ‘H’, ‘E’, ‘L’, ‘L’, ‘O’, and 0
○ We can refer to this sequence using a pointer:

char *str=”HELLO”;

19

‘H’ ‘E’ ‘L’ ‘L’ ‘O’ 0

 Address:100 101 102 103 104 105

100

str
printf(“%c”,*str); //prints H

printf(“%c”,*(str+1)); //prints E

Pointers and Strings
● When we refer to string “HELLO”, the sequence of

characters consists of ‘H’, ‘E’, ‘L’, ‘L’, ‘O’, and 0
○ We can refer to this sequence using a pointer:

char *str=”HELLO”;

20

‘H’ ‘E’ ‘L’ ‘L’ ‘O’ 0

 Address:100 101 102 103 104 105

100

str
IMPORTANT: the cells belong to a region
of memory called constant memory

Pointers and Strings
● the cells belong to a region of memory called constant

memory

char *str=”HELLO”;

21

‘H’ ‘E’ ‘L’ ‘L’ ‘O’ 0

 Address:100 101 102 103 104 105

100

str
*str=’Y’; //NOT ALLOWED

Pointers and Strings - Example

22

str

int main(){
char *str;

Pointers and Strings - Example

23

100

str

int main(){
char *str;
str = “HELLO”;

‘H’ ‘E’ ‘L’ ‘L’ ‘O’ 0

 Address:100 101 102 103 104 105

Pointers and Strings - Example

24

100

str

int main(){
char *str;
str = “HELLO”;
char arr[6]={‘H’,’E’,’L’,’L’,”O”};

‘H’ ‘E’ ‘L’ ‘L’ ‘O’ 0

 Address:100 101 102 103 104 105

‘H’ ‘E’ ‘L’ ‘L’ ‘O’ 0

 Address:500 501 502 503 504 505

arr Recall:array name synonymous
with location of first element.
Also notice that array has 6 cells
reserved. The sixth one is not
explicitly initialized in the initializer
list. So, 0 is put in the 6th cell.

Pointers and Strings - Example

25

100

str

int main(){
char *str;
str = “HELLO”;
char arr[6]={‘H’,’E’,’L’,’L’,”O”};
*str = ‘Y’;

‘H’ ‘E’ ‘L’ ‘L’ ‘O’ 0

 Address:100 101 102 103 104 105

‘H’ ‘E’ ‘L’ ‘L’ ‘O’ 0

 Address:500 501 502 503 504 505

arr

This is legal syntax. Why? Refer to
slide 8: int x=1234; int* p; p=&x; int
y=*p; //use *p wherever you wish to use x.

Pointers and Strings - Example

26

100

str

int main(){
char *str;
str = “HELLO”;
char arr[6]={‘H’,’E’,’L’,’L’,”O”};
*str = ‘Y’;

‘H’ ‘E’ ‘L’ ‘L’ ‘O’ 0

 Address:100 101 102 103 104 105

‘H’ ‘E’ ‘L’ ‘L’ ‘O’ 0

 Address:500 501 502 503 504 505

arr

This is legal syntax. Why? Refer to
slide 8: int x=1234; int* p; p=&x; int
y=*p; //use *p wherever you wish to use x.

But we see a segmentation fault if
we do this assignment. Because
address 100 is in constant memory:
string constants are allocated cells
in constant memory.

Pointers and Strings - Example

27

500

str

int main(){
char *str;
str = “HELLO”;
char arr[6]={‘H’,’E’,’L’,’L’,”O”};
//*str = ‘Y’;
str=arr;

‘H’ ‘E’ ‘L’ ‘L’ ‘O’ 0

 Address:100 101 102 103 104 105

‘H’ ‘E’ ‘L’ ‘L’ ‘O’ 0

 Address:500 501 502 503 504 505

arr

We assign/overwrite a different
value inside str’s cell. Now str
contains the address of the first
element of arr.

Pointers and Strings - Example

28

500

str

int main(){
char *str;
str = “HELLO”;
char arr[6]={‘H’,’E’,’L’,’L’,”O”};
//*str = ‘Y’;
str=arr;
printf(“%s”,str);

‘H’ ‘E’ ‘L’ ‘L’ ‘O’ 0

 Address:100 101 102 103 104 105

‘H’ ‘E’ ‘L’ ‘L’ ‘O’ 0

 Address:500 501 502 503 504 505

arr

Printf starts peeling one character
after another starting from address
500 until 0 is encountered.

Go through string.c shared in the code examples.

Next week
● Application of pointers

a. Modular programming (functions)
● Call-by-value, Call-by-reference
● Global variables, static variables
● Sorting

29

Functions
● You have seen functions main, printf, scanf, pow

(anybody?)

int main()

printf(“My name is %s”,name);

scanf(“%d”,&x);

Return values, function name, function arguments / parameters 30

Functions
● Let us define our own function to swap.

void swap(int a, int b){

int tmp = a;

a = b;

b=tmp;

return;

}

Function parameters, return statement, void type
31

Functions
● Let us call the function swap from main.

int main(){

int a=10;

int b=20;

swap(a, b);

printf(“a=%d b=%d”,a,b);

}

Function call, call site.
32

