
CS101C: Introduction to Programming
(Using C)
Autumn 2025

Week13: Unions, Preprocessor

1

Nikhil Hegde
Achyut Mani Tripathi

Unions
• Format is similar to that of structs.
• Used to create your own types (like structs)
• Used in embedded programming, compiler construction
union newtype{

int i;
char c;
float f;

};
see union.c in codeexample (shown in next slide)

2

#include<stdio.h>
union newtype{

int i;
char c;
float f;

};
int main(){

//define a variable of type newtype
union newtype x;
//assign value to the integer member of x
x.i=100;
//read the value from x's integer member
printf("x's integer value is:%d\n",x.i);
//assign value to char member of x
x.c='C';
printf("x's character value is:%c\n",x.c);
//assign value to float member of x
x.f=1.23;
printf("x's float value is:%f\n",x.f);
//print the size of x
size_t xsize=sizeof(x);
printf("x's size is:%zu\n",xsize); 3

//Fun: assign integer member a value of 0x12345641
x.i=0x12345641;
//now print the value in character member of x.
printf("x's character value is:%c\n",x.c);
//why do you see the output that you see?

}
Recap: what is another way to obtain the
size of x without using x here?

Recap: if this line were to be newtype x;
what code changes would you have to
make?

Creating a Program (Program
Development Environment)

• How to create a program and execute?

4

Implementation Toolchain Executable

• Tools that are involved:
preprocessor, compiler,
assembler, loader, linker

Tools that are involved:
Profilers, debuggers, code
coverage tools, testing
harnesses etc.

• Tools involved: editors,
IDEs, documentation tools

Exercise: what is the entry point of
execution?

Creating a Program
• Create your c program file

5

.cpp files.c
files

Creating a Program
• Preprocess your c program file

6

.cpp /

.cc /

.C
files

 .cpp /
 .cc /

 .C
 files

• Removes comments from your program,
• Expands #include statements
• Substitutes macros
• Performs conditional compilation

Macro Substitution

#define identifier substituted_text

E.g.

#define MAXCHARS 1024

char line[MAXCHARS];

7

see macro_subst2.c in codeexample

Macro Substitution (example2)
#define identifier substituted_text
E.g.

#define ABSDIFF(a, b) ((a)>(b) ? (a)-(b) : (b)-(a))

int main(){

int x=10, y=20,z;

z=ABSDIFF(x,y);

printf(“%d\n”,z);

}
see macro_subst1.c in codeexample. Check “discussed in class” comment.

8

• Set of 6 preprocessor directives and an operator.
• #if

• #ifdef

• #ifndef

• #elif

• #else

• #endif

• Operator ‘defined’

Conditional Compilation

9

#if <constant-expression>
printf(“CS101”);
#endif

#define COMP 0
#if COMP
printf(“CS101”);
#endif

#if

10

#define COMP 2
#if COMP
printf(“CS101”)
#endif

No compiler error Compiler throws error about
missing semicolon

//This line is compiled only if
<constant-expression> evaluates
to a non-zero while preprocessing

see hashif.c in
codeexample.

#ifdef identifier
printf(“CS101”);
#endif
identifier does not require a value to be set. Even if set,
does not care about 0 or non-zero.

#ifdef

11

#define COMP 2
#ifdef COMP
printf(“CS101”)
#endif

All three snippets throw compiler error about missing semicolon

#define COMP
#ifdef COMP
printf(“CS101”)
#endif

#define COMP 0
#ifdef COMP
printf(“CS101”)
#endif

//This line is compiled only if identifier
is defined before the previous line is
seen while preprocessing.

see hashifdef.c in
codeexample.

1. #ifdef identifier1
2. printf(“Summer”);
3. #elif identifier2
4. printf(“Fall”);
5. #else
6. printf(“Spring”);
7. #endif

//preprocessor checks if identifier1 is defined. if so, line 2 is
compiled. If not, checks if identifier2 is defined. If identifier2
is defined, line 4 is compiled. Otherwise, line 6 is compiled.

#else and #elif

12

Code this yourself!

Example:

#if defined(COMP)
printf(“Spring”);
#endif
//same as if #ifdef COMP

#if defined(COMP1) || defined(COMP2)
printf(“Spring”);
#endif

//if either COMP1 or COMP2 is defined, the printf statement is compiled.
As with #ifdef, COMP1 or COMP2 values are irrelevant.

defined operator

13

Code this yourself!

Creating a Program
• Get machine code that is part of libraries*

14

.cpp /

.cc /

.C
files

 .cpp /
 .cc /

 .C
 files

 .s
files

 .o
files

* Depending upon how you get the library code, linker or loader may be involved.

Creating a Program
• gcc helloworld.c

gcc is a command to translate your source code (by invoking a
collection of tools)
Above command produces a.out from .c file

15

.cpp /

.cc /

.C
files

 .cpp /
 .cc /

 .C
 files

 .s
files

 .o
files

Creating a Program
• gcc helloworld.c -lm

The -lm option tells the linker to link with math library (e.g. if
you are using pow function in your .c file)

16

.cpp /

.cc /

.C
files

 .cpp /
 .cc /

 .C
 files

 .s
files

 .o
files

Creating a Program
• gcc: other options

-Wall - Show all warnings
-o myexe - create the output machine code in a file called myexe

More available. We will not see them in this class.

17

Creating a Program
• The steps just discussed are ‘compiled’ way of

creating a program. E.g. C
• Interpreted way: alternative scheme where

source code is ‘interpreted’ / translated to
machine code piece by piece e.g. Python

• Pros and Cons.
– Compiled code runs faster, takes longer to develop
– Interpreted code runs normally slower, often faster to

develop 18

Creating a Program - Executable
• a.out is a pattern of 0s and 1s laid out in memory

– sequence of machine instructions
• How do we execute the program?

– ./a.out <optional command line arguments>

19

