CS101C: Introduction to Programming
(Using C)

Autumn 2025

Nikhil Hegde
Achyut Mani Tripathi

Week13: Unions, Preprocessor

Unions

« Format is similar to that of structs.
« Used to create your own types (like structs)
* Used in embedded programming, compiler construction
union newtype{
int 1;
char c;
float T;
}s

see union.c in codeexample (shown in next slide)

#include<stdio.h>
union newtype{

inti;
char c;
float f;
2
int main(){

//define a variable of type newtype

union newtype X; <«—

/[assign value to the integer member of x
x.i=100;

/Iread the value from x's integer member
printf("x's integer value is:%d\n",x.i);
/[assign value to char member of x
x.c='C";

printf("x's character value is:%c\n",x.c);
/[assign value to float member of x
x.f=1.23;

printf("x's float value is:%f\n",x.f);

[lprint the size of x

Recap: if this line were to be newtype x;
what code changes would you have to
make?

}

//[Fun: assign integer member a value of 0x12345641
X.i=0x12345641;

//Inow print the value in character member of x.
printf("x's character value is:%c\n",x.c);

/lwhy do you see the output that you see?

Recap: what is another way to obtain the

size t xsize=sizeof(x); <—

printf("x's size is:%zu\n",xsize);

size of x without using x here? 3

Creating a Program (Program
Development Environment)

* How to create a program and execute?

Implementation | = | Toolchain | = | Executable

- Tools involved: editors, | | | | |
IDEs, documentation tools * Tools that are involved: Tools that are involved:

preprocessor, compiler, Profilers, debuggers, code
assembler, loader, linker coverage tools, testing
harnesses etc.

Exercise: what is the entry point of
execution?

Creating a Program

 Create your c program file

Editor

(e.g. Vim) l v

Creating a Program

* Preprocess your ¢ program file

Editor
(e.g. Vim)

I

.C

1
» Preprocessor l* Compiler

.cpp / .cpp /

.cc/ .cc/
.C .C
files files

Removes comments from your program,
Expands #include statements
Substitutes macros

Performs conditional compilation

Macro Substitution

#define 1identifier substituted text

E.g.
#define MAXCHARS 1024
char line[MAXCHARS];

see macro_subst2.c in codeexample

Macro Substitution (exampleZ2)

#define identifier substituted text
E.g.
#define ABSDIFF(a, b) ((a)>(b) ? (a)-(b) : (b)-(a))

int main(){
int x=10, y=20,z;
z=ABSDIFF(x,y);
printf(“%d\n”,z);
}

see macro_subst1.c in codeexample. Check “discussed in class” comment.

Conditional Compilation

» Set of 6 preprocessor directives and an operator.
o #if
o #lfdef (eI-Egc-ilzto!_r:]) H PreprocessorlTl»Compiler HAssembler}—l—-{ Linker li—»a,-o,ut
.cp[:; files .cpp files s files .o files (executable

: i : file)
. 1 (with expanded #include,
i #lfn d ef : stripped of comments, etc.) '

o H#elif

 #felse
e #endif

* Operator ‘defined’

see hashif.c in

codeexample. #If

#1f <constant-expression>

printf(“CS101”); /[This line is compiled only if
#endif <constant-expression> evaluates

to a non-zero while preprocessing

#define COMP © #define COMP 2
#if COMP #if COMP
printf(“CS101”); printf(“CS101”)
#endif #endif

Compiler throws error about

No compiler error . :
missing semicolon 10

see hashifdef.c in

codeexample. #|fd ef

#1fdef idGhtlﬁl?P //This line is compiled only if identifier
pPlan(CS101”); is defined before the previous line is
#endif seen while preprocessing.

identifier does not require a value to be set. Even if set,
does not care about 0 or non-zero.

#define COMP #define COMP © #define COMP 2
#ifdef COMP #ifdef COMP #ifdef COMP
printf(“CS101”) printf(“CS101”) printf(“CS101”)
#endif #endif #endif

All three snippets throw compiler error about missing semicolon 11

Code this yourself!

#else and #elif

. #ifdef identifierl
. printf(“Summer®);
. #elif identifier2
. printf(“Fall”);

. #else

. printf(“Spring”);

. #endif

NOuUuTp, WN R

//preprocessor checks if identifier1 is defined. if so, line 2 is
compiled. If not, checks if identifier2 is defined. If identifier2
Is defined, line 4 is compiled. Otherwise, line 6 is compiled.

Code this yourself!

defined operator

Example:

#if defined(COMP)
printf(“Spring”);
#endif

//[same as if #ifdef COMP

#if defined(COMP1) || defined(COMP2)
printf(“Spring”);
#tendif

//if either COMP1 or COMP2 is defined, the printf statementis complled
As with #ifdef, COMP1 or COMP2 values are irrelevant.

Creating a Program

* Get machine code that is part of libraries®

Editc?r > Preprocessor [——% Compiler |- Assembler J Linker p—» a.out
(e.g. Vim) l | l 1 l '
< cpp/ .cpp/ S .0
.cc/ .cc/ files filae
.C .C
files files

* Depending upon how you get the library code, linker or loader may be involved.

14

Creating a Program

e gcc helloworld.c

Editc?r > Preprocessor [——% Compiler |- Assembler J Linker p—» a.out
(e.g. Vim) l | l l l |
< cpp/ .cpp/ S .0
.cc/ .cc/ files filae
.C .C
files files

gcc is a command to translate your source code (by invoking a
collection of tools)
Above command produces a.out from .c file

15

Creating a Program

e gcc helloworld.c -1m

Editor

| Prepr el i Bl i . 1 AS > ' i, a.out
L l: Preprocessor l Compiler l Assembler l Linker —r»
“ .cpp/ .cpp / s o
.cc/ .cc/ files filee
.C C
files files

The -1m option tells the linker to link with math library (e.qg. if

you are using pow function in your .c file) o

Creating a Program

e gcc: other options

-Wall - Show all warnings
-0 myexe - create the output machine code in a file called myexe

More available. We will not see them in this class.

17

Creating a Program

* The steps just discussed are ‘compiled’ way of
creating a program. E.g. C

* Interpreted way: alternative scheme where
source code is ‘interpreted’ / translated to
machine code piece by piece e.g. Python

 Pros and Cons.

— Compiled code runs faster, takes longer to develop

— Interpreted code runs normally slower, often faster to

18
develop

Creating a Program - Executable

e a.out is a pattern of Os and 1s laid out in memory
— sequence of machine instructions

* How do we execute the program?
- ./a.out <optional command line arguments>

19

