
CS101C: Introduction to Programming
(Using C)
Autumn 2025

Week11: Structures (continued), FileIO

1

Nikhil Hegde
Achyut Mani Tripathi

Pass-by-val

pass-by-ref

Why
pass-by-ref is
good ?

2

Last class

Printing
address of
structure
fields

3

Last class

printf("address of: author field=%p, year=%p price=%p\n",

&(b1.author),&(b1.year), &(b1.price));

struct book{

 char author[50];

 int year;

 float price;

};

Gap between ..60 and ..94 = 0x34 bytes = 52 bytes.

Gap between ..94 and ..98 = 0x4 bytes = 4 bytes. Why? Size of year = 4 bytes

Why? author = 50 bytes + 2 bytes padding.

Typedef

A way to rename existing types.

Syntax: typedef existing_type_name new_type_name

Example:

typedef struct book{
 char author[50];

 int year;

 float price;

}book;

book b1; //no need of struct book b1;
4

Last class

File Input Output

5

#include<stdio.h>

int main(){

 FILE * filehandle=fopen("book1.txt","r");
 if(filehandle != NULL){

 printf("value of filehandle:%p\n", filehandle);
 fclose(filehandle);
 }
}

Argument1: File
name (string)

Argument2: Mode
(string)

Return type: pointer to FILE type. Called
file handle.

fopen: function used to open the file.
fclose: function used to close a file.

//automatically called when program terminates

File Input Output

6

#include<stdio.h>

int main(){

 FILE * filehandle=fopen("book1.txt","r");
 if(filehandle != NULL){

 printf("value of filehandle:%p\n", filehandle);
 fclose(filehandle);
 }
}

Argument1: File
name (string)

Argument2: Mode
(string)

Return type: pointer to FILE type. Called
file handle.

fopen: when the mode is read (i.e. “r”) and if file does not exist, 0 is

returns 0 (NULL is a macro for 0. We’ll see macros next.)

File Input Output

7

#include<stdio.h>

int main(){

 FILE * filehandle=fopen("book1.txt","r");
 if(filehandle != NULL){

 printf("value of filehandle:%p\n", filehandle);
 fclose(filehandle);
 }
}

Argument1: File
name (string)

Argument2: Mode
(string)

Return type: pointer to FILE type. Called
file handle.

Other modes are “w” (write), “a” (append). You can also have “rb”,
“wb”,”ab” to indicate a binary file.

fopen - other modes

8
source: https://cplusplus.com/reference/cstdio/fopen/

getc
int getc(FILE∗ fp)

● reads a single character from the file stream.
● returns the character read or EOF on error/end of file.

9
see getc.c in codeexamples.

reads prints

fgets
char* fgets(char line [], int maxlen,FILE∗ fp)

• reads a single line (upto maxlen characters) from the
input stream (including newline / line break).

• returns a pointer to the character array that stores the
line

10see fgets.c in codeexamples.

reads prints

putc
int putc(int c,FILE∗ fp)

● writes a single character c to the output stream.
● returns the character written or EOF on error.

11

see putc.c in codeexamples.

 writes

fputs
int fputs(char line [], FILE∗ fp)

• writes a single line to the output stream.

• returns non-negative number on success, EOF
otherwise.

12

 writes

see fputs.c in codeexamples.

fscanf
int fscanf(FILE∗ fp, const char * format...)

• similar to scanf
• reads input from file itemwise
• returns number of arguments matched

13

see fscanf.c in codeexamples.

fprintf
int fprintf(FILE∗ fp, const char* str...)

• similar to printf.
• Writes to file.
• Returns number of bytes (characters) written to file.

14

see fprintf.c in codeexamples.

