CS101C: Introduction to Programming
(Using C)

Autumn 2025

Nikhil Hegde
Achyut Mani Tripathi

Week11: Structures (continued), FilelO



24
Last cIassiZ
27
28
29
30
oH
32
33

=™ A

Pass-by-val

24
pass-by-ref 25

Why 28
pass-by-refis 29
good ? 30

void printBookDetails(struct book b){
printf("author:%s year:%d price: %f\n",b.author, b.year, b.price);

}

int main(){
struct book bi;
strcpy(bl.author, "YashwantKanetkar™);
bi.year=2002;
bl.price=53.25;
printBookDetails(b1l);

void printBookDetails(struct book* b){

printf("author:%s year:%d price: %f\n",(*b).author, (*b).year, (*b).price);
1
J

int main(){
struct book bi1;
strcpy(bl.author, "Yashwantkanetkar");
bl.year=2002;
bi.price=53.25;

printBookDetails(&b1);



struct book{

Last CIaSS char author[50];
Printing int year;

address of float price;
structure

fields }s

printf("address of: author field=%p, year=%p price=%p\n",
&(bl.author),&(bl.year), &(bl.price));

address of: author field=0x7ffff1737060, year=0x7ffff1737094 price=0x7ffff1737098]

Gap between ..60 and ..94 = 0x34 bytes = 52 bytes. Why? author + 2 bytes padding.

Gap between ..94 and ..98 = 0x4 bytes = 4 bytes. Why? Size of year =4 hytes



Last class

Typedef
A way to rename existing types.

Syntax: typedef existing type name new type name

Example:

typedef struct book{
char author[50];

int year;
float price;
tbook;

book bl; //no need of struct book bi;



File Input Output

. . Return type: pointer to FILE type. Called
#include<stdio.h> file handle.

Argumentl: File Argument2: Mode
int main(){ name (string) (string)

-
FILE * filehandle=fopen("bookl.txt","r");

if(filehandle != NULL){
printf("value of filehandle:%p\n", filehandle);

fclose(filehandle);
} //automatically called when program terminates

¥

fopen: function used to open the file.
fclose: function used to close a file. °



File Input Output

. . Return type: pointer to FILE type. Called
#include<stdio.h> file handle.

Argumentl: File Argument2: Mode
int main(){ name (string) (string)

-
FILE * filehandle=fopen("bookl.txt","r");

if(filehandle != NULL){
printf("value of filehandle:%p\n", filehandle);
fclose(filehandle);

¥
¥

o7
I

fopen: when the mode is read (i.e. “r”) and if file does not exist, O is

returns 0 (NULL is a macro for 0. We’ll see macros next.)




File Input Output

. . Return type: pointer to FILE type. Called
#include<stdio.h> file handle.

Argumentl: File Argument2: Mode
int main(){ name (string) (string)

-
FILE * filehandle=fopen("bookl.txt","r");

if(filehandle != NULL){
printf("value of filehandle:%p\n", filehandle);
fclose(filehandle);

¥
¥

Other modes are “w” (write), “a” (append). You can also have “rb”,
“wb”,”ab” to indicate a binary file.



______ fopen - other modes

"r' Iread: Open file for input operations. The file must exist.

write: Create an empty file for output operations. If a file with the same name already exists, its contents are discarded and the file is
treated as a new empty file.

append: Open file for output at the end of a file. Output operations always write data at the end of the file, expanding it. Repositioning
operations (fseek, fsetpos, rewind) are ignored. The file is created if it does not exist.

r+" read/update: Open a file for update (both for input and output). The file must exist.

write/update: Create an empty file and open it for update (both for input and output). If a file with the same name already exists its
contents are discarded and the file is treated as a new empty file.

append/update: Open a file for update (both for input and output) with all output operations writing data at the end of the file.
a+" Repositioning operations (fseek, fsetpos, rewind) affects the next input operations, but output operations move the position back to
the end of file. The file is created if it does not exist.

With the mode specifiers above the file is open as a text file. In order to open a file as a binary file, a "b" character has to be included in the
mode string. This additional "b" character can either be appended at the end of the string (thus making the following compound modes:
"rb", "wb", "ab", "r+b", "w+b", "a+b") or be inserted between the letter and the "+" sign for the mixed modes ("rb+", "wb+", "ab+").

The new C standard (C2011, which is not part of C++) adds a new standard subspecifier ("x"), that can be appended to any "w" specifier
(to form "wx", "wbx", "w+x" or "w+bx"/"wb+x"). This subspecifier forces the function to fail if the file exists, instead of overwriting it.

source: https://cplusplus.com/reference/cstdio/fopen/



getc

int getc(FILE* fp)

o reads a single character from the file stream.
o returns the character read or EOF on error/end of file.

B reads D prints
\Hello - -

hello.txt getc.c

see getc.c in codeexamples.



fgets

char* fgets(char line [], int maxlen,FILE* fp)

e reads a single line (upto maxlen characters) from the
input stream (including newline / line break).

e returns a pointer to the character array that stores the

line
elo ~ reads D prints

hello.txt fgets.c

see fgets.c in codeexamples.



putc

int putc(int c,FILE* fp)

writes a single character c to the output stream.
returns the character written or EOF on error.

writes
b o

putc.c hello.txt

see putc.c in codeexamples.

11



fputs

int fputs(char line [], FILE* fp)
e writes a single line to the output stream.

e returns non-negative number on success, EOF
otherwise.

D writes @

hello.txt
fputs.c

see fputs.c in codeexamples.

12



fscanf

int fscanf(FILE* fp, const char * format...)

. similar to scanf
reads input from file itemwise
returns number of arguments matched

see fscanf.c in codeexamples.



fprintf

int fprintf(FILE* fp, const char* str...)

- Similar to printf.
. Writes to file.
Returns number of bytes (characters) written to file.

see fprintf.c in codeexamples.



