CS101C: Introduction to Programming
(Using C)

Autumn 2025

Nikhil Hegde
Achyut Mani Tripathi

Week10: Recursion (continued), Structures



Recursion — a real life example

“This is an increasingly common occurrence in our
political discourse.”

Washington Post Jun 25, 2019

discourse:

a formal discussion of a subject in speech or writing, as
a dissertation, treatise, sermon, etc.

treatise:
a formal and systematic exposition in writing of the principles of
a subject, generally longer andmore detailed than an essay.

exposition:
the act of expounding, setting forth, or explaining.


https://www.washingtonpost.com/politics/2019/06/25/introducing-fact-checkers-guide-manipulated-video/

void LookUpDictionary(string n) {
array<string> retVal = GetMeaning(n)
foreach element in retval:
if meaning of element is known
continue;
else
LookUpDictionary(element);



Recap: Example - Factorial

n!l =nx (n-1) x (n-2) x . . . x3x2x1
(n-1)! = (n-1) x (n-2) x . . . x3x2x1
therefore,

n!l =nx (n-1)!

is this complete?

* plug 0 to n and the equation breaks.

—

therefore, n x (n-1)! when n>=1

n'= -
1 when n=0 // factorial of

—negative numbers not defined.




Example - Factorial

—

| n x (n-1)! when n>=1
nl=1

1 when n=0 // factorial of

—

negative numbers not defined.
int factorial(int n) {
if(n >=1)
return n * factorial(n-1);
else
return 1;



Example - Factorial

int factorial(int n) {

if(n == 0)
return 1;
else

return n * factorial(n-1);



Today’s class (8/10/2025)

. Recursion (Recap)
. Structures



Exercise

int exl(char* str)
{
if(*str == “\0°)
return 9;
else
return 1 + ex1(str+l);

NOuUulphh wWN R

¥

what does the function ex1 do?



Structures in C

Used to group dissimilar variables into logical entities

e Example: Name, branch, and CPI of a student.
Name is a character array, branch is an integer, and CPI is a floating-point
number. But all these 3 values (name, branch, and CPI) are attributes of one
particular student.

struct student {
char name[100];
int branch;
float cpi;

s



Structures in C

struct student {
char name[100];
int branch;
float cpi;

}i

e Highlights declaration of a structure and the name by which the structure will
be known.

10



Structures in C

struct student {
char name[100];
int branch;
float cpi;

e Individual members of the structure ‘student’
e Each variable holds the value corresponding to each attribute of the logical
entity we are dealing with in the program

11



Structures in C

struct student {
char name[100]:
int branch;
float cpi;

'

struct student student1, student2;
struct student students[10];

In the example shown:

student1, and student2 are
variables of type struct student.
struct student can be thought
of as a new user-defined type.
struct student can also be used
just like built-in types (int, char,
and float) when passing it to
functions and returning from
functions.

Each variable will have its
associated name, branch and
cpi

students[10] is an array of 10
elements of type struct student




Structures in C

struct student {
char name[100];
int branch;
float cpi;

e

struct student studentl1, student2;

strcpy(student1.name, “Tom”);
student1.branch = 10;
studentl.cpi = 10.0;

In the example shown:

e The member variables of
student1 are initialized (or
assigned new values)

e Each member variable of the
structure are assigned values in
separate statements.

13




Structures in C

struct location { One structure can be inside another structure.

float latitude; In the example shown:
) float longitude; e Avariable of type struct location isinside
! another variable of type struct user.
struct user { e The member variable inside the variable loc
char name[100]; (that is inside user1) is accessed by using
struct location loc; multiple . (dots).
|

struct user useril;
userl.loc.latitude = 23.7;

14



Structures in C

struct item { In the example shown:

char code; 5 :

int quantity; e The member variables of soap,

float price; brush (of type struct item)
) ' are initialized in a single statement.
S’,C ruct item soap brush: e NOTE this style of initialization

' ' does not work for char arrays (or
strings).

soap = {'s’, 2, 12.5};

brush = {‘'b’, 1, 25.0};

15



O 0O NO UV AW

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

~

#include<stdio.h>
#include<string.h>

//below is the definition of a structure. note the keyword struct, curly braces, and semicolon.

struct student{

}s

char name[100];
int branch;
float cpi;

//another struct definition.
struct personalinfo{

s

int phone;
char gender;
float age;

Structures: Demo

//another struct definition to demonstrate nested structures.
struct studentv2{

char name[100];

int branch;

float cpi;

struct personalinfo info;

16



27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

45
46
47

int main(){
//definition of a variable of type student
struct student si1;
//initialization (Writing to) of the fields of the struct student.
//note the dot notation to access the fields.
sl.branch=1;
sl.cpi=2.5;
//sl.name="Sam"; is this allowed? No. Why? "Sam" is a string constant and its type is char *.

//on the lhs we have sl.name, which is an array of characters and its type is char []. type mismatch between lhs and rhs.

//so, one way to initialize the name field of si variable is:
strcpy(sl.name, "Rama");

printf("student name:%s student branch:%d student cpi:%f\n",sl.name, sl.branch, si.cpi);
//initialize the fields.

struct personalinfo il= {12345678,'M',45};

printf(“"contact number:%d gender:%c age:%f\n",il.phone, il.gender, il.age);
//define a variable of type struct studentv2

struct studentv2 s2;

//write values into the info field of s2:

s2.info=i1;

//write other values into s2's fields.

see struct_demo.c shared in code examples

17



Today’s class (10/10/2025)

- Array of Structures
. Address of structure variables and structure fields
. Passing structures to functions



3 7.
13
14
15
16
17
18
19
20
21
22
23
24
25,
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

AR

Structures: demo

//below function modifies the|l cpi field of a struct student variable. This function is an example of call-by-reference.
void cpimodifier(struct student* s){

(*s).cpi=5.0; //note that we can use s->cpi=5.0 as well

return;

¥

int main(){
//below is an example of an array of structure: students is an array of struct student of size 2.
struct student students[2];

//below code accepts user input and writes them into the fields of struct student array elements. You can uncomment this code and enter input from terminal.

/*printf("Enter student details (name, branch, cpi)\n");

for(int i=0;i<2;i++){
//note. you can also write this line as: scanf("%s",&students[i].name); However, you get a warning.
//The reason is that the type of students[i].name is "char [96]". When you say &students[i].name, you are
//trying to get the address and so the address must be stored in a pointer variable of type char (*)[96].
//However, %s in scanf expects a "char *" argument.

//If you pass the argument as students[i].name, then because array name is synonymous with the address of the first element of the array, no warning is seen.

//we satisfy
scanf("%s",students[i].name);
scanf("%d",&students[i].branch);
scanf("%f",&students[i].cpi);
)
//below code writes to the cpi field of the struct student variable (first element of the array)
students[0].cpi=10.0;
printf("gpa of student[@] (before calling gpamodifier): %f\n",students[@].cpi);

//print the size of the struct student. Uncomment this line to see the size.
//printf("size of struct student: %zu\n",sizeof(struct student));

//call the function cpimodifier and pass the first element of the array students. The first element is of type struct student. We need to pass the address of this.

//hence, we pass &students[0]
cpimodifier(&students[@]);

see struct_demo2.c shared in code examples

19



