
Research Statement

Massive computing power and applications running on this power, primarily confined to expen-
sive supercomputers a decade ago, have now become mainstream through the availability of clus-
ters with commodity computers and high-speed interconnects running big-data era applications.
The challenges associated with programming such systems, for effectively utilizing the computing
power, have led to the creation of intuitive abstractions and implementations targeting average
users, domain experts, and savvy (parallel) programmers. There is often a trade-off between the
ease of programming and performance when using these abstractions. My research focuses on
developing tools to bridge the gap between ease of programming and performance of irregular
programs—programs that involve one or more of irregular- data structures, control structures, and
communication patterns—on distributed-memory systems.

For example, the use of trees as spatial acceleration structures (kdtree, octree etc.) is a common
optimization in n-body problems, which in a näıve implementation, require comparing each of a set
of items with every element in the data set. Such data-dependent computation manipulating
complicated data structures such as trees and graphs causes unpredictability in control-flow and
communication patterns. And this unpredictability in irregular programs is the chief obstacle
in effectively optimizing them for parallelism, locality, and communication, which are crucial for
achieving a scalable performance. As irregular programs typically involve data sets that overwhelm
the memory or compute power of a single compute node, distributed-memory solutions become
necessary. Summarizing my research gives a glimpse of the proposed solutions. I have introduced:

• A framework [3] consisting of an abstraction and a space-adaptive runtime system for sim-
plifying the creation of distributed implementations of recursive irregular programs based on
spatial acceleration structures. Through a set of optimizations, the system achieves a scal-
able performance, and outperforms implementations done in contemporary distributed graph
processing frameworks.

• An ontology and a benchmark suite [4] for better understanding of optimizations and tree-
algorithms in general. Using the ontology, we can generalize existing optimizations from one
domain to another and find out optimizations applicable for new tree algorithms.

• A system [2] for automatically generating distributed-memory implementations of recursive
divide-conquer algorithms. The system generates implementations that execute significantly
faster than manual implementations done using similar frameworks and often outperform
hand-written distributed implementations.

This research has explored topics in high-performance computing, programming languages, and
distributed systems, and has touched upon a number of application domains such as data mining,
numerical computing, statistics, and bioinformatics. As a result, it has opened up new directions
that I would like to explore. In the short term, I would like to optimize important irregular
algorithms from the domains of numerical computing, bioinformatics, and image retrieval for large-
scale data processing. In the long term, given the increasingly heterogeneous computing capabilities
of nodes in a cluster, I would like to focus on developing techniques for efficiently utilizing the
heterogeneous computing power for executing irregular programs, and making these techniques
accessible to average programmer. In this regard, I have open-sourced all my previous works so
that expert programmers can improve the system and domain-specific application programmers
can quickly deploy their algorithm.

1



Research approach

I have adopted the principle of generalization (of optimizations and methods) by abstracting com-
mon structural properties of irregular programs from various application domains. This approach
has been beneficial for me, since, understanding structural properties of an algorithm and opti-
mizations has demanded a deep-dive into the application domain, and has fostered my interest in
newer areas. While SPIRIT [3] employed a generalization of a Barnes-Hut specific optimization,
Treelogy [4] tried to identify the conditions under which a generalization of an optimization could
be possible. With D2P [2], I believe I can generalize the inspector-executor based method, ap-
plied to recursive divide-conquer algorithms with certain properties, to a broader class of irregular
applications.

Prior research

SPIRIT [3] provides a set of APIs and a runtime system to automate the creation and traversal of
distributed spatial trees. I developed SPIRIT to address the insufficiency of traditional data-parallel
approaches and existing systems in effectively parallelizing a subset of irregular applications based
on spatial trees. As there is an abundant amount of parallelism in these applications due to repeated
independent tree traversals, data-parallelism seems natural. However, a data-parallel approach to
parallelizing traversals by executing them on multiple tree replicas is ruled out for large data sets
because there is not enough space to store the tree in memory. So the tree must be distributed across
compute nodes. In SPIRIT, I show that traversals on distributed trees can be executed efficiently
through the use of optimizations targeting parallelism, communication overhead, locality, and load-
balance. The SPIRIT system provides space-adaptivity by partially replicating the tree when space
permits. This feature allows for seamless performance transition from a data-parallel approach
to purely distributed solution. Also, I collaborated on developing an inspector-executor guided
scheduling optimization for executing spatial tree traversals on GPUs [1].

Whether a new optimization or a tree algorithm, it is challenging to device an efficient imple-
mentation strategy considering a rich history of application- and platform- specific optimizations
and tree algorithms. Treelogy [4] was conceived with the idea of understanding the connection be-
tween optimizations and tree-algorithms. Treelogy provides an ontology and a benchmark suite of a
broader class of tree algorithms to help answer: (i) is there any existing optimization that is applica-
ble or effective for a new tree algorithm? (ii) can a new optimization developed for a particular tree
algorithm be applied to existing tree algorithms from other domains? I show that a categorization
(ontology) based on structural properties of tree-algorithms is useful for both developers of new
optimizations and new tree algorithm creators. With the help of a suite of tree traversal kernels
spanning the ontology, my collaborators and I show that GPU, shared-, and distributed-memory
implementations are scalable and the two-point correlation algorithm with vptree performs better
than the ‘standard’ kdtree implementation.

Given the complexities of distributed-memory programming, is it possible to completely auto-
mate the creation of distributed-memory implementations of irregular programs? Here, a broader
goal is to let a computer generate a distributed-memory implementation of any irregular program
starting from its shared-memory artefact (specification, pseudocode, implementation). I take the
first step towards this goal through specifications for recursive divide-conquer algorithms having
certain properties: i) inclusive—a recursive method’s parameters summarize the data access done
within the method body. ii) Intersection—data-set intersection tests among method invocations
can be computed efficiently when a hierarchical decomposition creates disjoint partitions of data,

2



which are computed in a specific order (preorder) as determined by the control-flow of the program.
Recursive formulations of Dynamic Programming (DP) algorithms are well-known examples having
these properties. As recursive divide-conquer algorithms with inclusive and intersection properties
have irregularity only in their communication patterns, they are a couple of degrees less complex
compared to irregular applications with all three degrees of irregularity—data-structures, control-
flow, and communication. As a result, they provide a convenient starting point for automatic
distributed-memory code generation. D2P [2] is a framework for generating distributed-memory
implementations of recursive divide-conquer algorithms starting from their specifications. In D2P,
I show that it is possible to achieve a scalable performance, and even outperform hand-written
distributed-memory implementations with the help of intuitive user-configurable knobs to control
parallelism.

Future directions

Short term based on the frameworks and optimizations that I have built and used, I believe ex-
isting solutions for some of the problems in image retrieval, numerical computing, and bioinformat-
ics can be improved using efficient data partitioning strategies, data-structures, and formulations
targeting locality optimizations. The specific goal would be to create abstractions and new algo-
rithms for processing data at scale: (1) building a scalable system for finding similar images from
a repository using efficient spatial acceleration structures such as distributed vptrees, (2) creating
libraries of efficient distributed implementations leveraging recent advances in Eigen-value solvers,
and (3) creating efficient implementations of problems in bioinformatics based on their recursive
formulations.

Long term I would like to develop techniques for simplifying the creation of performance-oriented
programs of irregular applications for large-scale data processing. Considering the heterogeneity
of cores—latency tolerant, NUMA-aware, GPUs—in nodes of state-of-the-art and future clusters,
effective utilization of computing power asks for careful designing of algorithms and orchestrating
the computation. As a result we expect to see increased programming complexity, thus calling for
automation. To realize the automation goal, I believe there are multiple concrete directions such
as a programming-by-examples/program-synthesis from specifications approach, using intuitive de-
sign of programming languages / domain-specific languages, source to source translation aided by
efficient abstractions and runtime systems. However, in spirit, I believe the path towards realizing
this goal requires understanding of the computation patterns in irregular applications, employing
optimizations that are effective for those patterns, and mapping those computation patterns to
hardware. In this regard, experience from the past is reassuring: SPIRIT and Treelogy explored
algorithms based on a common pattern of repeated tree traversals, and D2P explored algorithms
with the inclusivity and intersection properties.

References

[1] Jianqiao Liu, Nikhil Hegde, and Milind Kulkarni. Hybrid CPU-GPU Scheduling and Execu-
tion of Tree Traversals. In Proceedings of the 2016 International Conference on Supercomputing,
ICS ’16, pages 2:1–2:12, New York, NY, USA, 2016. ACM.

[2] Nikhil Hegde, Qifan Chang, and Milind Kulkarni. D2P: An Inspector-Executor Based Ap-
proach to Automatically Creating Distributed Dynamic Programming Codes (in preparation).

3



[3] Nikhil Hegde, Jianqiao Liu, and Milind Kulkarni. SPIRIT: A Framework for Creating Dis-
tributed Recursive Tree Applications. In Proceedings of the International Conference on Super-
computing, ICS ’17. ACM, 2017.

[4] Nikhil Hegde, Jianqiao Liu, Kirshanthan Sundararajah, and Milind Kulkarni. Treelogy: A
benchmark suite for tree traversals. In 2017 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), pages 227–238, April 2017.

4


